Show simple item record

dc.contributor.authorAronov, Boris
dc.contributor.authorBose, Prosenjit
dc.contributor.authorGudmundsson, Joachim
dc.contributor.authorIacono, John
dc.contributor.authorLangerman, Stefan
dc.contributor.authorSmid, Michiel
dc.contributor.authorDemaine, Erik D
dc.date.accessioned2018-08-24T19:53:19Z
dc.date.available2018-09-02T05:00:05Z
dc.date.issued2017-11
dc.identifier.issn0178-4617
dc.identifier.issn1432-0541
dc.identifier.urihttp://hdl.handle.net/1721.1/117528
dc.description.abstractWe consider preprocessing a set S of n points in convex position in the plane into a data structure supporting queries of the following form: given a point q and a directed line ℓ in the plane, report the point of S that is farthest from (or, alternatively, nearest to) the point q among all points to the left of line ℓ. We present two data structures for this problem. The first data structure uses O(n[superscript 1+ε]) space and preprocessing time, and answers queries in O(2[superscript 1/ε]logn) time, for any 0<ε<1. The second data structure uses O(nlog[superscript 3]n) space and polynomial preprocessing time, and answers queries in O(logn) time. These are the first solutions to the problem with O(logn) query time and o(n2) space. The second data structure uses a new representation of nearest- and farthest-point Voronoi diagrams of points in convex position. This representation supports the insertion of new points in clockwise order using only O(logn) amortized pointer changes, in addition to O(logn) -time point-location queries, even though every such update may make Θ(n) combinatorial changes to the Voronoi diagram. This data structure is the first demonstration that deterministically and incrementally constructed Voronoi diagrams can be maintained in o(n) amortized pointer changes per operation while keeping O(logn) -time point-location queries. Keywords: Voronoi diagrams, Data structures, Trees, Flarbsen_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00453-017-0389-yen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleData Structures for Halfplane Proximity Queries and Incremental Voronoi Diagramsen_US
dc.typeArticleen_US
dc.identifier.citationAronov, Boris, et al. “Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams.” Algorithmica, vol. 80, no. 11, Nov. 2018, pp. 3316–34.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorDemaine, Erik D
dc.relation.journalAlgorithmicaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-08-07T03:48:08Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media, LLC
dspace.orderedauthorsAronov, Boris; Bose, Prosenjit; Demaine, Erik D.; Gudmundsson, Joachim; Iacono, John; Langerman, Stefan; Smid, Michielen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record