MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing

Author(s)
Cirit, Murat
Thumbnail
Downloaddocument.pdf (8.853Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The recent advent of microphysiological systems-microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro-promises to enable a global paradigm shift in drug development. An extraordinary US government initiative and various dedicated research programs in Europe and Asia recently have led to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis will model various disease stages and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus replacing the use of laboratory animal models. Here, thirty-six experts from academia, industry and regulatory bodies present the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies as well as various national and international programs are highlighted. Finally, a roadmap into the future towards more predictive and regulatory-accepted substance testing on a global scale is outlined. Keywords: microphysiological systems, organ-on-a-chip, in vitro models, predictive toxicology, drug testing
Date issued
2016-08
URI
http://hdl.handle.net/1721.1/117681
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
ALTEX
Publisher
Spektrum Akademischer Verlag
Citation
Marx, Uwe. “Biology-Inspired Microphysiological System Approaches to Solve the Prediction Dilemma of Substance Testing.” ALTEX (2016).
Version: Final published version
ISSN
1868-596X
1868-8551

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.