MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

TNF-insulin crosstalk at the transcription factor GATA6 is revealed by a model that links signaling and transcriptomic data tensors

Author(s)
Chitforoushzadeh, Zeinab; Ye, Zi; Sheng, Ziran; LaRue, Silvia; Fry, Rebecca C.; Janes, Kevin A.; Lauffenburger, Douglas A; ... Show more Show less
Thumbnail
Downloadnihms794190.pdf (2.531Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Signal transduction networks coordinate transcriptional programs activated by diverse extracellular stimuli, such as growth factors and cytokines. Cells receive multiple stimuli simultaneously, and mapping how activation of the integrated signaling network affects gene expression is a challenge. We stimulated colon adenocarcinoma cells with various combinations of the cytokine tumor necrosis factor (TNF) and the growth factors insulin and epidermal growth factor (EGF) to investigate signal integration and transcriptional crosstalk. We quantitatively linked the proteomic and transcriptomic data sets by implementing a structured computational approach called tensor partial least squares regression. This statistical model accurately predicted transcriptional signatures from signaling arising from single and combined stimuli and also predicted time-dependent contributions of signaling events. Specifically, the model predicted that an early-phase, AKT-associated signal downstream of insulin repressed a set of transcripts induced by TNF. Through bioinformatics and cell-based experiments, we identified the AKT-repressed signal as glycogen synthase kinase 3 (GSK3)-catalyzed phosphorylation of Ser37on the long form of the transcription factor GATA6. Phosphorylation of GATA6 on Ser37promoted its degradation, thereby preventing GATA6 from repressing transcripts that are induced by TNF and attenuated by insulin. Our analysis showed that predictive tensor modeling of proteomic and transcriptomic data sets can uncover pathway crosstalk that produces specific patterns of gene expression in cells receiving multiple stimuli.
Date issued
2016-06
URI
http://hdl.handle.net/1721.1/117694
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Science Signaling
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Chitforoushzadeh, Zeinab et al. “TNF-Insulin Crosstalk at the Transcription Factor GATA6 Is Revealed by a Model That Links Signaling and Transcriptomic Data Tensors.” Science Signaling 9, 431 (June 2016): ra59
Version: Author's final manuscript
ISSN
1945-0877
1937-9145

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.