MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Factorization theorem relating Euclidean and light-cone parton distributions

Author(s)
Izubuchi, Taku; Ji, Xiangdong; Jin, Luchang; Stewart, Iain W.; Zhao, Yong
Thumbnail
DownloadPhysRevD.98.056004.pdf (744.6Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/3.0
Metadata
Show full item record
Abstract
In a large-momentum nucleon state, the matrix element of a gauge-invariant Euclidean Wilson line operator accessible from lattice QCD can be related to the standard light-cone parton distribution function through the large-momentum effective theory (LaMET) expansion. This relation is given by a factorization formula with a nontrivial matching coefficient. Using the operator product expansion we derive the large-momentum factorization of the quasiparton distribution function in LMET, and show that the more recently discussed pseudoparton distribution approach also obeys an equivalent factorization formula. Explicit results for the coefficients are obtained and compared at one loop. We also prove that the matching coefficients in the MS[over ¯] scheme depend on the large partonic momentum rather than the nucleon momentum.
Date issued
2018-09
URI
http://hdl.handle.net/1721.1/117716
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Laboratory for Nuclear Science
Journal
Physical Review D
Publisher
American Physical Society
Citation
Izubuchi, Taku, et al. “Factorization Theorem Relating Euclidean and Light-Cone Parton Distributions.” Physical Review D, vol. 98, no. 5, Sept. 201. © 2018 American Physical Society
Version: Final published version
ISSN
2470-0010
2470-0029

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.