MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intrinsic and emergent anomalies at deconfined critical points

Author(s)
Thorngren, Ryan; Metlitski, Maxim A.
Thumbnail
DownloadPhysRevB.98.085140.pdf (627.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
It is well known that theorems of Lieb-Schultz-Mattis type prohibit the existence of a trivial symmetric gapped ground state in certain systems possessing a combination of internal and lattice symmetries. In the continuum description of such systems, the Lieb-Schultz-Mattis theorem is manifested in the form of a quantum anomaly afflicting the symmetry. We demonstrate this phenomenon in the context of the deconfined critical point between a Neel state and a valence bond solid in an S=1/2 square lattice antiferromagnet and compare it to the case of S=1/2 honeycomb lattice where no anomaly is present. We also point out that new anomalies, unrelated to the microscopic Lieb-Schultz-Mattis theorem, can emerge, prohibiting the existence of a trivial gapped state in the immediate vicinity of critical points or phases. For instance, no translationally invariant weak perturbation of the S=1/2 gapless spin chain can open up a trivial gap even if the spin-rotation symmetry is explicitly broken. The same result holds for the S=1/2 deconfined critical point on a square lattice.
Date issued
2018-08
URI
http://hdl.handle.net/1721.1/117718
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Metlitski, Max A., and Ryan Thorngren. “Intrinsic and Emergent Anomalies at Deconfined Critical Points.” Physical Review B, vol. 98, no. 8, Aug. 2018. © 2018 American Physical Society
Version: Final published version
ISSN
2469-9950
2469-9969

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.