Show simple item record

dc.contributor.authorGam, Jeremy Jonathan
dc.contributor.authorBabb, Jonathan
dc.contributor.authorWeiss, Ron
dc.date.accessioned2018-09-12T18:00:24Z
dc.date.available2018-09-12T18:00:24Z
dc.date.issued2018-06
dc.date.submitted2018-01
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/117727
dc.description.abstractMicroRNAs (miRNAs) regulate a majority of protein-coding genes, affecting nearly all biological pathways. However, the quantitative dimensions of miRNA-based regulation are not fully understood. In particular, the implications of miRNA target site location, composition rules for multiple target sites, and cooperativity limits for genes regulated by many miRNAs have not been quantitatively characterized. We explore these aspects of miRNA biology at a quantitative single-cell level using a library of 620 miRNA sensors and reporters that are regulated by many miRNA target sites at different positions. Interestingly, we find that miRNA target site sets within the same untranslated region exhibit combined miRNA activity described by an antagonistic relationship while those in separate untranslated regions show synergy. The resulting antagonistic/synergistic computational model enables the high-fidelity prediction of miRNA sensor activity for sensors containing many miRNA targets. These findings may help to accelerate the development of sophisticated sensors for clinical and research applications.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01CA173712)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant P50GM098792)en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41467-018-04575-0en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleA mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activityen_US
dc.typeArticleen_US
dc.identifier.citationGam, Jeremy J. et al. “A Mixed Antagonistic/synergistic miRNA Repression Model Enables Accurate Predictions of Multi-Input miRNA Sensor Activity.” Nature Communications 9, 1 (June 2018): 2430 © 2018 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Synthetic Biology Centeren_US
dc.contributor.mitauthorGam, Jeremy Jonathan
dc.contributor.mitauthorBabb, Jonathan
dc.contributor.mitauthorWeiss, Ron
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-09-12T14:14:23Z
dspace.orderedauthorsGam, Jeremy J.; Babb, Jonathan; Weiss, Ronen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4600-0383
dc.identifier.orcidhttps://orcid.org/0000-0003-0396-2443
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record