MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiscale Poroviscoelastic Compressive Properties of Mouse Supraspinatus Tendons Are Altered in Young and Aged Mice

Author(s)
Connizzo, Brianne K; Grodzinsky, Alan J
Thumbnail
Downloadbio_140_05_051002.pdf (2.375Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Rotator cuff disorders are one of the most common causes of shoulder pain and disability in the aging population but, unfortunately, the etiology is still unknown. One factor thought to contribute to the progression of disease is the external compression of the rotator cuff tendons, which can be significantly increased by age-related changes such as muscle weakness and poor posture. The objective of this study was to investigate the baseline compressive response of tendon and determine how this response is altered during maturation and aging. We did this by characterizing the compressive mechanical, viscoelastic, and poroelastic properties of young, mature, and aged mouse supraspinatus tendons using macroscale indentation testing and nanoscale high-frequency AFM-based rheology testing. Using these multiscale techniques, we found that aged tendons were stiffer than their mature counterparts and that both young and aged tendons exhibited increased hydraulic permeability and energy dissipation. We hypothesize that regional and age-related variations in collagen morphology and organization are likely responsible for changes in the multiscale compressive response as these structural parameters may affect fluid flow. Importantly, these results suggest a role for age-related changes in the progression of tendon degeneration, and we hypothesize that decreased ability to resist compressive loading via fluid pressurization may result in damage to the extracellular matrix (ECM) and ultimately tendon degeneration. These studies provide insight into the regional multiscale compressive response of tendons and indicate that altered compressive properties in aging tendons may be a major contributor to overall tendon degeneration.
Date issued
2018-02
URI
http://hdl.handle.net/1721.1/117759
Department
Massachusetts Institute of Technology. Center for Biomedical Engineering; Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Biomechanical Engineering
Publisher
ASME International
Citation
Connizzo, Brianne K., and Alan J. Grodzinsky. “Multiscale Poroviscoelastic Compressive Properties of Mouse Supraspinatus Tendons Are Altered in Young and Aged Mice.” Journal of Biomechanical Engineering 140, 5 (February 2018): 051002 © 2018 ASME
Version: Final published version
ISSN
0148-0731

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.