Life: the first two billion years
Author(s)
Knoll, Andrew H.; Strauss, Justin V.; Bergmann, Kristin
Download72231674.pdf (1.179Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Microfossils, stromatolites, preserved lipids and biologically informative isotopic ratios provide a substantial record of bacterial diversity and biogeochemical cycles in Proterozoic (2500-541 Ma) oceans that can be interpreted, at least broadly, in terms of present-day organisms and metabolic processes. Archean (more than 2500 Ma) sedimentary rocks add at least a billion years to the recorded history of life, with sedimentological and biogeochemical evidence for life at 3500 Ma, and possibly earlier; phylogenetic and functional details, however, are limited. Geochemistry provides a major constraint on early evolution, indicating that the first bacteria were shaped by anoxic environments, with distinct patterns of major and micronutrient availability. Archean rocks appear to record the Earth’s first iron age, with reduced Fe as the principal electron donor for photosynthesis, oxidized Fe the most abundant terminal electron acceptor for respiration, and Fe a key cofactor in proteins. With the permanent oxygenation of the atmosphere and surface ocean ca 2400 Ma, photic zone O2 limited the access of photosynthetic bacteria to electron donors other thanwater,while expanding the inventory of oxidants available for respiration and chemoautotrophy. Thus, halfway through Earth history, the microbial underpinnings of modern marine ecosystems began to take shape.
Date issued
2016-09Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesJournal
Philosophical Transactions of the Royal Society B: Biological Sciences
Publisher
The Royal Society
Citation
Knoll, Andrew H., et al. “Life: The First Two Billion Years.” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 371, no. 1707, Nov. 2016, p. 20150493. © 2016 The Authors.
Version: Author's final manuscript
ISSN
0962-8436
1471-2970