Show simple item record

dc.contributor.authorEnriquez, Benjamin
dc.contributor.authorEtingof, Pavel I
dc.date.accessioned2018-10-01T14:19:43Z
dc.date.available2018-10-01T14:19:43Z
dc.date.issued2017-12
dc.identifier.issn1386-923X
dc.identifier.issn1572-9079
dc.identifier.urihttp://hdl.handle.net/1721.1/118298
dc.description.abstractLet n ≥ 1. The pro-unipotent completion of the pure braid group of n points on a genus 1 surface has been shown to be isomorphic to an explicit pro-unipotent group with graded Lie algebra using two types of tools: (a) minimal models (Bezrukavnikov), (b) the choice of a complex structure on the genus 1 surface, making it into an elliptic curve E, and an appropriate flat connection on the configuration space of n points in E (joint work of the authors with D. Calaque). Following a suggestion by P. Deligne, we give an interpretation of this isomorphism in the framework of the Riemann-Hilbert correspondence, using the total space E[superscript #] of an affine line bundle over E, which identifies with the moduli space of line bundles over E equipped with a flat connection.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1502244)en_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10468-017-9754-4en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Netherlandsen_US
dc.titleA Tannakian Interpretation of the Elliptic Infinitesimal Braid Lie Algebrasen_US
dc.typeArticleen_US
dc.identifier.citationEnriquez, Benjamin, and Pavel Etingof. “A Tannakian Interpretation of the Elliptic Infinitesimal Braid Lie Algebras.” Algebras and Representation Theory, vol. 21, no. 5, Oct. 2018, pp. 943–1002.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorEtingof, Pavel I
dc.relation.journalAlgebras and Representation Theoryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-09-19T03:55:20Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media B.V., part of Springer Nature
dspace.orderedauthorsEnriquez, Benjamin; Etingof, Pavelen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-0710-1416
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record