Cytosolic Delivery of Proteins by Bioreversible Esterification
Author(s)
Lomax, Jo E.; Mix, Kalie; Raines, Ronald T
DownloadCytosolic delivery with SI.pdf (1.825Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Cloaking its carboxyl groups with a hydrophobic moiety is shown to enable a protein to enter the cytosol of a mammalian cell. Diazo compounds derived from (p-methylphenyl)glycine were screened for the ability to esterify the green fluorescent protein (GFP) in an aqueous environment. Esterification of GFP with 2-diazo-2-(p-methylphenyl)-N,N-dimethylacetamide was efficient. The esterified protein entered the cytosol by traversing the plasma membrane directly, like a small-molecule prodrug. As with prodrugs, the nascent esters are substrates for endogenous esterases, which regenerate native protein. Thus, esterification could provide a general means to deliver native proteins to the cytosol.
Date issued
2017-10Department
Massachusetts Institute of Technology. Department of ChemistryJournal
Journal of the American Chemical Society
Publisher
American Chemical Society
Citation
Mix, Kalie A., et al. “Cytosolic Delivery of Proteins by Bioreversible Esterification.” Journal of the American Chemical Society, vol. 139, no. 41, Oct. 2017, pp. 14396–98
Version: Author's final manuscript
ISSN
0002-7863
1520-5126