Development of a new methane tracer: kinetic isotope effect of [superscript 13]CH[subscript 3]D + OH from 278 to 313 K
Author(s)
Joelsson, L. M. T.; Schmidt, J. A.; Nilsson, E. J. K.; Blunier, T.; Griffith, D. W. T.; Johnson, M. S.; Ono, Shuhei; ... Show more Show less
Downloadacp-16-4439-2016.pdf (246.1Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Methane is the second most important long-lived greenhouse gas and plays a central role in the chemistry of the Earth’s atmosphere. Nonetheless there are significant uncertainties in its source budget. Analysis of the isotopic
composition of atmospheric methane, including the doubly substituted species [superscript 13]CH[subscript 3]D, offers new insight into the methane budget as the sources and sinks have distinct isotopic signatures. The most important sink of atmospheric methane is oxidation by OH in the troposphere, which accounts for around 84 % of all methane removal.
Here we present experimentally derived methane + OH kinetic isotope effects and their temperature dependence over the range of 278 to 313 K for CH[subscript 3]D and [superscript 13]CH[subscript 3]D; the latter is reported here for the first time. We find k[suscript CH[subscript 4]]/k[subscript CH[subscript 3]D] = 1.31±0.01 and k[subscript CH[subscript 4]]/k[subscript 13[subscript CH[subscript 3]D]] = 1.34±0.03 at room temperature,
implying that the methane + OH kinetic isotope effect is multiplicative such that (k[subscript CH[subscript 4]]/k[subscript 13[subscript CH[subscript 4]]]
)(k[subscript CH[subscript 4]]/k[subscript CH[subscript 3]D]]) = k[subscript CH[subscript 4]]/k[subscript 13[subscript CH[subscript 3]D]], within the experimental uncertainty, given the literature value of k[subscript CH[subscript 4]]/k[subscript 13[subscript CH[subscript 4]]] = 1.0039 ± 0.0002. In addition, the kinetic isotope effects were characterized
using transition state theory with tunneling corrections. Good agreement between the experimental, quantum chemical, and available literature values was obtained. Based on the results we conclude that the OH reaction (the
main sink of methane) at steady state can produce an atmospheric clumped isotope signal (Δ([superscript 13]CH[subscript 3]D) = ln([CH[subscript 4]][[superscript 13]CH[subscript 3]D]/[
[superscript 13]CH[subscript 4]][CH[subscript 3]D])) of 0.02 ± 0.02. This
implies that the bulk tropospheric Δ([superscript 13]CH[subscript 3]D) reflects the source signal with relatively small adjustment due to the sink
signal (i.e., mainly OH oxidation).
Date issued
2016-04Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesJournal
Atmospheric Chemistry and Physics Discussions
Publisher
Copernicus GmbH
Citation
Joelsson, L. M. T., et al. “Development of a New Methane Tracer: Kinetic Isotope Effect of [superscript 13]CH[subscript 3]D + OH from 278 to 313 K.” Atmospheric Chemistry and Physics Discussions, vol. 15, no. 19, Oct. 2015, pp. 27853–75. © 2106 Authors
Version: Final published version
ISSN
1680-7375