MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Growth of clogs in parallel microchannels

Author(s)
Sauret, Alban; Somszor, Katarzyna; Villermaux, Emmanuel; Dressaire, Emilie
Thumbnail
DownloadPhysRevFluids.3.104301.pdf (2.535Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
During the transport of colloidal suspensions in microchannels, the deposition of particles can lead to the formation of clogs, typically at constrictions. Once a clog is formed in a microchannel, advected particles form an aggregate upstream from the site of the blockage. This aggregate grows over time, which leads to a dramatic reduction of the flow rate. In this paper, we present a model that predicts the growth of the aggregate formed upon clogging of a microchannel. We develop an analytical description that captures the time evolution of the volume of the aggregate, as confirmed by experiments performed using a pressure-driven suspension flow in a microfluidic device. We show that the growth of the aggregate increases the hydraulic resistance in the channel and leads to a drop in the flow rate of the suspensions. We then derive a model for the growth of aggregates in multiple parallel microchannels where the clogging events are described using a stochastic approach. The aggregate growths in the different channels are coupled. Our work illustrates the critical influence of clogging events on the evolution of the flow rate in microchannels. The coupled dynamics of the aggregates described here for parallel channels is key to bridge clogging at the pore scale with macroscopic observations of the flow rate evolution at the filter scale.
Date issued
2018-10
URI
http://hdl.handle.net/1721.1/118347
Department
MIT Energy Initiative
Journal
Physical Review Fluids
Publisher
American Physical Society
Citation
Sauret, Alban, et al. “Growth of Clogs in Parallel Microchannels.” Physical Review Fluids, vol. 3, no. 10, Oct. 2018. © 2018 American Physical Society
Version: Final published version
ISSN
2469-990X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.