Show simple item record

dc.contributor.authorJaiswal, S.
dc.contributor.authorLitzius, K.
dc.contributor.authorBüttner, F.
dc.contributor.authorFinizio, S.
dc.contributor.authorRaabe, J.
dc.contributor.authorWeigand, M.
dc.contributor.authorLee, K.
dc.contributor.authorLanger, J.
dc.contributor.authorOcker, B.
dc.contributor.authorJakob, G.
dc.contributor.authorKläui, M.
dc.contributor.authorLemesh, Ivan
dc.contributor.authorBeach, Geoffrey Stephen
dc.date.accessioned2018-10-05T17:43:03Z
dc.date.available2018-10-05T17:43:03Z
dc.date.issued2017-07
dc.date.submitted2017-04
dc.identifier.issn0003-6951
dc.identifier.issn1077-3118
dc.identifier.urihttp://hdl.handle.net/1721.1/118377
dc.description.abstractRecent studies have shown that material structures, which lack structural inversion symmetry and have high spin-orbit coupling can exhibit chiral magnetic textures and skyrmions which could be a key component for next generation storage devices. The Dzyaloshinskii-Moriya Interaction (DMI) that stabilizes skyrmions is an anti-symmetric exchange interaction favoring non-collinear orientation of neighboring spins. It has been shown that materials systems with high DMI can lead to very efficient domain wall and skyrmion motion by spin-orbit torques. To engineer such devices, it is important to quantify the DMI for a given material system. Here, we extract the DMI at the Heavy Metal/Ferromagnet interface using two complementary measurement schemes, namely, asymmetric domain wall motion and the magnetic stripe annihilation. By using the two different measurement schemes, we find for W(5 nm)/Co₂₀Fe₆₀B₂₀(0.6 nm)/MgO(2 nm) the DMI to be 0.68 ± 0.05 mJ/m² and 0.73 ± 0.5 mJ/m², respectively. Furthermore, we show that this DMI stabilizes skyrmions at room temperature and that there is a strong dependence of the DMI on the relative composition of the CoFeB alloy. Finally, we optimize the layers and the interfaces using different growth conditions and demonstrate that a higher deposition rate leads to a more uniform film with reduced pinning and skyrmions that can be manipulated by spin orbit torques.en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Basic Energy Sciences (Award DE-SC0012371)en_US
dc.publisherAIP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4991360en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT Web Domainen_US
dc.titleInvestigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwiresen_US
dc.typeArticleen_US
dc.identifier.citationJaiswal, S. et al. “Investigation of the Dzyaloshinskii-Moriya Interaction and Room Temperature Skyrmions in W/CoFeB/MgO Thin Films and Microwires.” Applied Physics Letters 111, 2 (July 2017): 022409 © 2017 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorLemesh, Ivan
dc.contributor.mitauthorBeach, Geoffrey Stephen
dc.relation.journalApplied Physics Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-09-25T16:41:50Z
dspace.orderedauthorsJaiswal, S.; Litzius, K.; Lemesh, I.; Büttner, F.; Finizio, S.; Raabe, J.; Weigand, M.; Lee, K.; Langer, J.; Ocker, B.; Jakob, G.; Beach, G. S. D.; Kläui, M.en_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record