MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Viriato : A Fourier–Hermite spectral code for strongly magnetized fluid–kinetic plasma dynamics

Author(s)
Dorland, W.; Fazendeiro, L.; Kanekar, A.; Mallet, A.; Vilelas, M.S.; Zocco, A.; Gomes Loureiro, Nuno F; ... Show more Show less
Thumbnail
DownloadLoureiro_Viriato.pdf (2.074Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
We report on the algorithms and numerical methods used in Viriato, a novel fluid–kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations (Zocco and Schekochihin, 2011) (which reduce to the standard Reduced-MHD equations in the appropriate limit) and (ii) the kinetic reduced MHD (KRMHD) equations (Schekochihin et al., 2009). Two main applications of these equations are magnetized (Alfvénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting (Strang or Godunov) to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme composed of the combination of a total variation diminishing (TVD) third order Runge–Kutta method for the time derivative with a 7th order upwind scheme for the fluxes. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor–corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, including a detailed analysis of 2D and 3D Orszag–Tang-type decaying turbulence, both in fluid and kinetic regimes. Keywords: PlasmaFourier–Hermite, Reduced gyrokinetics, Turbulence, Magnetic reconnection
Date issued
2016-09
URI
http://hdl.handle.net/1721.1/118403
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
Computer Physics Communications
Publisher
Elsevier BV
Citation
Loureiro, N. F., et al. “Viriato : A Fourier–Hermite Spectral Code for Strongly Magnetized Fluid–Kinetic Plasma Dynamics.” Computer Physics Communications, vol. 206, Sept. 2016, pp. 45–63.
Version: Original manuscript
ISSN
0010-4655

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.