Show simple item record

dc.contributor.authorBorodin, Alexei
dc.contributor.authorPetrov, Leonid
dc.date.accessioned2018-10-11T15:59:02Z
dc.date.available2018-10-11T15:59:02Z
dc.date.issued2016-04
dc.date.submitted2014-02
dc.identifier.issn0001-8708
dc.identifier.issn1090-2082
dc.identifier.urihttp://hdl.handle.net/1721.1/118437
dc.description.abstractMacdonald processes are certain probability measures on two-dimensional arrays of interlacing particles introduced by Borodin and Corwin in [7]. They are defined in terms of nonnegative specializations of the Macdonald symmetric functions and depend on two parameters q,t∈[0;1). Our main result is a classification of continuous time, nearest neighbor Markov dynamics on the space of interlacing arrays that act nicely on Macdonald processes. The classification unites known examples of such dynamics and also yields many new ones. When t=0, one dynamics leads to a new integrable interacting particle system on the one-dimensional lattice, which is a q-deformation of the PushTASEP (= long-range TASEP). When q=t, the Macdonald processes become the Schur processes of Okounkov and Reshetikhin [41]. In this degeneration, we discover new Robinson–Schensted-type correspondences between words and pairs of Young tableaux that govern some of our dynamics. Keywords: Macdonald processes; q-Whittaker processes; TASEP; q-TASEP; Kardar–Parisi–Zhang universality class; Interlacing particle arrays; Gelfand–Tsetlin schemes; Multivariate Markov dynamics; Young diagrams; Young tableaux; Robinson–Schensted–Knuth correspondence; Randomized Robinson–Schensted correspondenceen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.AIM.2016.03.016en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleNearest neighbor Markov dynamics on Macdonald processesen_US
dc.typeArticleen_US
dc.identifier.citationBorodin, Alexei and Leonid Petrov. “Nearest Neighbor Markov Dynamics on Macdonald Processes.” Advances in Mathematics 300 (September 2016): 71–155 © 2016 Elsevieren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorBorodin, Alexei
dc.contributor.mitauthorPetrov, Leonid
dc.relation.journalAdvances in Mathematicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-09-25T17:04:27Z
dspace.orderedauthorsBorodin, Alexei; Petrov, Leoniden_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2913-5238
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record