Show simple item record

dc.contributor.authorDryden, Emily
dc.contributor.authorGuillemin, Victor W
dc.contributor.authorSena-Dias, Rosa Isabel
dc.date.accessioned2018-10-11T19:26:16Z
dc.date.available2018-10-11T19:26:16Z
dc.date.issued2016-05
dc.date.submitted2016-01
dc.identifier.issn0001-8708
dc.identifier.issn1090-2082
dc.identifier.urihttp://hdl.handle.net/1721.1/118447
dc.description.abstractWe prove inverse spectral results for differential operators on manifolds and orbifolds invariant under a torus action. These inverse spectral results involve the asymptotic equivariant spectrum, which is the spectrum itself together with "very large" weights of the torus action on eigenspaces. More precisely, we show that the asymptotic equivariant spectrum of the Laplace operator of any toric metric on a generic toric orbifold determines the equivariant biholomorphism class of the orbifold; we also show that the asymptotic equivariant spectrum of a Tn-invariant Schrödinger operator on Rn determines its potential in some suitably convex cases. In addition, we prove that the asymptotic equivariant spectrum of an S1-invariant metric on S2determines the metric itself in many cases. Finally, we obtain an asymptotic equivariant inverse spectral result for weighted projective spaces. As a crucial ingredient in these inverse results, we derive a surprisingly simple formula for the asymptotic equivariant trace of a family of semi-classical differential operators invariant under a torus action. Keywords: Laplacian; Asymptotic equivariant spectrum; Semi-classical weights; Toric manifold; Symplectic orbifolden_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.AIM.2016.02.037en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleSemi-classical weights and equivariant spectral theoryen_US
dc.typeArticleen_US
dc.identifier.citationDryden, Emily B. et al. “Semi-Classical Weights and Equivariant Spectral Theory.” Advances in Mathematics 299 (August 2016): 202–246 © 2016 Elsevier Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorDryden, Emily
dc.contributor.mitauthorGuillemin, Victor W
dc.contributor.mitauthorSena-Dias, Rosa Isabel
dc.relation.journalAdvances in Mathematicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-09-25T17:53:38Z
dspace.orderedauthorsDryden, Emily B.; Guillemin, Victor; Sena-Dias, Rosaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2641-1097
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record