Show simple item record

dc.contributor.authorFarber, Miriam
dc.contributor.authorPostnikov, Alexander
dc.date.accessioned2018-10-11T19:58:47Z
dc.date.available2018-10-11T19:58:47Z
dc.date.issued2016-03
dc.date.submitted2015-01
dc.identifier.issn0001-8708
dc.identifier.issn1090-2082
dc.identifier.urihttp://hdl.handle.net/1721.1/118450
dc.description.abstractWe discuss arrangements of equal minors of totally positive matrices. More precisely, we investigate the structure of equalities and inequalities between the minors. We show that arrangements of equal minors of largest value are in bijection with sorted sets, which earlier appeared in the context of alcoved polytopes and Gröbner bases. Maximal arrangements of this form correspond to simplices of the alcoved triangulation of the hypersimplex; and the number of such arrangements equals the Eulerian number. On the other hand, we prove in many cases that arrangements of equal minors of smallest value are weakly separated sets. Weakly separated sets, originally introduced by Leclerc and Zelevinsky, are closely related to the positive Grassmannian and the associated cluster algebra. However, we also construct examples of arrangements of smallest minors which are not weakly separated using chain reactions of mutations of plabic graphs. Keywords: Totally positive matrices; The positive Grassmannian; Minors and Plücker coordinates; Matrix completion problem; Arrangements of equal minors; Weakly separated and sorted sets; Triangulations and thrackles; Cluster algebras and plabic graphs; The Laurent phenomenon; Alcoved polytopeshypersimplices; The affine Coxeter arrangement; The Eulerian numbers; Chain reactions of mutations; Mutation distancehoneycombs; Gröbner bases; Schur positivityen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.AIM.2016.03.031en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleArrangements of equal minors in the positive Grassmannianen_US
dc.typeArticleen_US
dc.identifier.citationFarber, Miriam, and Alexander Postnikov. “Arrangements of Equal Minors in the Positive Grassmannian.” Advances in Mathematics 300 (September 2016): 788–834 © 2016 Elsevier Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorFarber, Miriam
dc.contributor.mitauthorPostnikov, Alexander
dc.relation.journalAdvances in Mathematicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-09-25T18:17:03Z
dspace.orderedauthorsFarber, Miriam; Postnikov, Alexanderen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1427-506X
dc.identifier.orcidhttps://orcid.org/0000-0002-3964-8870
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record