MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Role of the ocean's AMOC in setting the uptake efficiency of transient tracers

Author(s)
Romanou, A.; Marshall, J.; Kelley, M.; Scott, Jeremy
Thumbnail
Downloadnihms952768.pdf (1.433Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The central role played by the ocean's Atlantic Meridional Overturning Circulation (AMOC) in the uptake and sequestration of transient tracers is studied in a series of experiments with the Goddard Institute for Space Studies and Massachusetts Institute of Technology ocean circulation models. Forced by observed atmospheric time series of CFC‐11, both models exhibit realistic distributions in the ocean, with similar surface biases but different response over time. To better understand what controls uptake, we ran idealized forcing experiments in which the AMOC strength varied over a wide range, bracketing the observations. We found that differences in the strength and vertical scale of the AMOC largely accounted for the different rates of CFC‐11 uptake and vertical distribution thereof. A two‐box model enables us to quantify and relate uptake efficiency of passive tracers to AMOC strength and how uptake efficiency decreases in time. We also discuss the relationship between passive tracer and heat uptake efficiency, of which the latter controls the transient climate response to anthropogenic forcing in the North Atlantic. We find that heat uptake efficiency is substantially less (by about a factor of 5) than that for a passive tracer.
Date issued
2017-05
URI
http://hdl.handle.net/1721.1/118455
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Geophysical Research Letters
Publisher
American Geophysical Union (AGU)
Citation
Romanou, A., et al. “Role of the Ocean’s AMOC in Setting the Uptake Efficiency of Transient Tracers.” Geophysical Research Letters, vol. 44, no. 11, June 2017, pp. 5590–98.
Version: Author's final manuscript
ISSN
0094-8276

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.