Show simple item record

dc.contributor.authorSuo, Liumin
dc.contributor.authorXue, Weijiang
dc.contributor.authorGobet, Mallory
dc.contributor.authorGreenbaum, Steve G.
dc.contributor.authorWang, Chao
dc.contributor.authorChen, Yuming
dc.contributor.authorYang, Wanlu
dc.contributor.authorLi, Yangxing
dc.contributor.authorLi, Ju
dc.date.accessioned2018-10-12T16:58:01Z
dc.date.available2018-10-12T16:58:01Z
dc.date.issued2018-01
dc.date.submitted2017-07
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/118463
dc.description.abstractLithium metal has gravimetric capacity ∼10× that of graphite which incentivizes rechargeable Li metal batteries (RLMB) development. A key factor that limits practical use of RLMB is morphological instability of Li metal anode upon electrodeposition, reflected by the uncontrolled area growth of solid-electrolyte interphase that traps cyclable Li, quantified by the Coulombic inefficiency (CI). Here we show that CI decreases approximately exponentially with increasing donatable fluorine concentration of the electrolyte. By using up to 7 m of Li bis(fluorosulfonyl)imide in fluoroethylene carbonate, where both the solvent and the salt donate F, we can significantly suppress anode porosity and improve the Coulombic efficiency to 99.64%. The electrolyte demonstrates excellent compatibility with 5-V LiNi0.5Mn1.5O4cathode and Al current collector beyond 5 V. As a result, an RLMB full cell with only 1.4× excess lithium as the anode was demonstrated to cycle above 130 times, at industrially significant loading of 1.83 mAh/cm2and 0.36 C. This is attributed to the formation of a protective LiF nanolayer, which has a wide bandgap, high surface energy, and small Burgers vector, making it ductile at room temperature and less likely to rupture in electrodeposition.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant ECCS-1610806)en_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/PNAS.1712895115en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleFluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteriesen_US
dc.typeArticleen_US
dc.identifier.citationSuo, Liumin et al. “Fluorine-Donating Electrolytes Enable Highly Reversible 5-V-Class Li Metal Batteries.” Proceedings of the National Academy of Sciences 115, 6 (January 2018): 1156–1161 © 2018 National Academy of Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorSuo, Liumin
dc.contributor.mitauthorXue, Weijiang
dc.contributor.mitauthorWang, Chao
dc.contributor.mitauthorChen, Yuming
dc.contributor.mitauthorLi, Ju
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-09-26T12:13:45Z
dspace.orderedauthorsSuo, Liumin; Xue, Weijiang; Gobet, Mallory; Greenbaum, Steve G.; Wang, Chao; Chen, Yuming; Yang, Wanlu; Li, Yangxing; Li, Juen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3060-4580
dc.identifier.orcidhttps://orcid.org/0000-0002-7841-8058
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record