Show simple item record

dc.contributor.authorSilberberg, Yaron R.
dc.contributor.authorKim, Min-Cheol
dc.contributor.authorAbeyaratne, Rohan
dc.contributor.authorKamm, Roger Dale
dc.contributor.authorAsada, Haruhiko
dc.date.accessioned2018-10-12T18:58:07Z
dc.date.available2018-10-12T18:58:07Z
dc.date.issued2018-01
dc.date.submitted2017-10
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/118468
dc.description.abstractFilopodia have a key role in sensing both chemical and mechanical cues in surrounding extracellular matrix (ECM). However, quantitative understanding is still missing in the filopodialmechanosensing of local ECM stiffness, resulting from dynamic interactions between filopodia and the surrounding 3D ECM fibers. Here we present a method for characterizing the stiffness of ECM that is sensed by filopodia based on the theory of elasticity and discrete ECM fiber. We have applied this method to a filopodial mechanosensing model for predicting directed cell migration toward stiffer ECM. This model provides us with a distribution of force and displacement as well as their time rate of changes near the tip of a filopodium when it is bound to the surrounding ECM fibers. Aggregating these effects in each local region of 3D ECM, we express the local ECM stiffness sensed by the cell and explain polarity in the cellular durotaxis mechanism. Keywords: filopodia; mechanosensing; ECM; durotaxis; computational modelingen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/PNAS.1717230115en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleComputational modeling of three-dimensional ECM-rigidity sensing to guide directed cell migrationen_US
dc.typeArticleen_US
dc.identifier.citationKim, Min-Cheol et al. “Computational Modeling of Three-Dimensional ECM-Rigidity Sensing to Guide Directed Cell Migration.” Proceedings of the National Academy of Sciences 115, 3 (January 2, 2018): E390–E399 © 2018 National Academy of Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorKim, Min-Cheol
dc.contributor.mitauthorAbeyaratne, Rohan
dc.contributor.mitauthorKamm, Roger Dale
dc.contributor.mitauthorAsada, Haruhiko
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-09-26T12:06:14Z
dspace.orderedauthorsKim, Min-Cheol; Silberberg, Yaron R.; Abeyaratne, Rohan; Kamm, Roger D.; Asada, H. Harryen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6649-9463
dc.identifier.orcidhttps://orcid.org/0000-0003-2912-1538
dc.identifier.orcidhttps://orcid.org/0000-0002-7232-304X
dc.identifier.orcidhttps://orcid.org/0000-0003-3155-6223
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record