MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Observed mesoscale eddy signatures in Southern Ocean surface mixed-layer depth

Author(s)
Hausmann, U.; McGillicuddy, Dennis J.; Marshall, John C
Thumbnail
DownloadHausmann_et_al-2017-Journal_of_Geophysical_Research__Oceans.pdf (7.292Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Combining satellite altimetry with Argo profile data a systematic observational estimate of mesoscale eddy signatures in surface mixed-layer depth (MLD) is provided across the Southern Ocean (SO). Eddy composite MLD anomalies are shallow in cyclones, deep in anticyclones, and increase in magnitude with eddy amplitude. Their magnitudes show a pronounced seasonal modulation roughly following the depth of the climatological mixed layer. Weak eddies of the relatively quiescent SO subtropics feature peak late-winter perturbations of ±10 m. Much larger MLD perturbations occur over the vigorous eddies originating along the Antarctic Circumpolar Current (ACC) and SO western boundary current systems, with late-winter peaks of −30 m and +60 m in the average over cyclonic and anticyclonic eddy cores (a difference of ≈ 100 m). The asymmetry between modest shallow cyclonic and pronounced deep anticyclonic anomalies is systematic and not accompanied by corresponding asymmetries in eddy amplitude. Nonetheless, the net deepening of the climatological SO mixed layer by this asymmetry in eddy MLD perturbations is estimated to be small (few meters). Eddies are shown to enhance SO MLD variability with peaks in late winter and eddy-intense regions. Anomalously deep late-winter mixed layers occur disproportionately within the cores of anticyclonic eddies, suggesting the mesoscale heightens the frequency of deep winter surface-mixing events along the eddy-intense regions of the SO. The eddy modulation in MLD reported here provides a pathway via which the oceanic mesoscale can impact air-sea fluxes of heat and carbon, the ventilation of water masses, and biological productivity across the SO.
Date issued
2017-01
URI
http://hdl.handle.net/1721.1/118474
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of Geophysical Research: Oceans
Publisher
American Geophysical Union (AGU)
Citation
Hausmann, U. et al. “Observed Mesoscale Eddy Signatures in Southern Ocean Surface Mixed-Layer Depth.” Journal of Geophysical Research: Oceans 122, 1 (January 2017): 617–635 © 2016 American Geophysical Union
Version: Final published version
ISSN
2169-9291

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.