Show simple item record

dc.contributor.authorKoshino, Mikito
dc.contributor.authorYuan, Noah F. Q.
dc.contributor.authorKoretsune, Takashi
dc.contributor.authorOchi, Masayuki
dc.contributor.authorKuroki, Kazuhiko
dc.contributor.authorFu, Liang
dc.date.accessioned2018-10-18T18:33:09Z
dc.date.available2018-10-18T18:33:09Z
dc.date.issued2018-09
dc.date.submitted2018-05
dc.identifier.issn2160-3308
dc.identifier.urihttp://hdl.handle.net/1721.1/118612
dc.description.abstractWe develop an effective extended Hubbard model to describe the low-energy electronic properties of the twisted bilayer graphene. By using the Bloch states in the effective continuum model and with the aid of the maximally localized algorithm, we construct the Wannier orbitals and obtain an effective tight-binding model on the emergent honeycomb lattice. We find that the Wannier state takes a peculiar three-peak form in which the amplitude maxima are located at the triangle corners surrounding the center. We estimate the direct Coulomb interaction and the exchange interaction between the Wannier states. At the filling of two electrons per supercell, in particular, we find an unexpected coincidence in the direct Coulomb energy between a charge-ordered state and a homogeneous state, which could possibly lead to an unconventional many-body state.en_US
dc.description.sponsorshipUnited States. Department of Energy. Division of Materials Sciences and Engineering (Award DE-SC0010526)en_US
dc.description.sponsorshipDavid & Lucile Packard Foundationen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevX.8.031087en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0en_US
dc.sourceAmerican Physical Societyen_US
dc.titleMaximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Grapheneen_US
dc.typeArticleen_US
dc.identifier.citationKoshino, Mikito, et al. “Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene.” Physical Review X, vol. 8, no. 3, Sept. 2018. © 2018 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.contributor.mitauthorFu, Liang
dc.contributor.mitauthorYuan, Noah F. Q.
dc.relation.journalPhysical Review Xen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-09-28T18:00:24Z
dc.language.rfc3066en
dspace.orderedauthorsKoshino, Mikito; Yuan, Noah F. Q.; Koretsune, Takashi; Ochi, Masayuki; Kuroki, Kazuhiko; Fu, Liangen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8803-1017
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record