MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Direct Medial Entorhinal Cortex Input to Hippocampal CA1 Is Crucial for Extended Quiet Awake Replay

Author(s)
Yamamoto, Jun; Tonegawa, Susumu
Thumbnail
Downloadnihms912066.pdf (2.954Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Hippocampal replays have been demonstrated to play a crucial role in memory. Chains of ripples (ripple bursts) in CA1 have been reported to co-occur with long-range place cell sequence replays during the quiet awake state, but roles of neural inputs to CA1 in ripple bursts and replays are unknown. Here we show that ripple bursts in CA1 and medial entorhinal cortex (MEC) are temporally associated. An inhibition of MECIII input to CA1 during quiet awake reduced ripple bursts in CA1 and restricted the spatial coverage of replays to a shorter distance corresponding to single ripple events. The reduction did not occur with MECIII input inhibition during slow-wave sleep. Inhibition of CA3 activity suppressed ripples and replays in CA1 regardless of behavioral state. Thus, MECIII input to CA1 is crucial for ripple bursts and long-range replays specifically in quiet awake, whereas CA3 input is essential for both, regardless of behavioral state. Yamamoto and Tonegawa aim to determine the contribution of MECIII and CA3 inputs to hippocampal ripples and replays. They found differential roles of MECIII and CA3 inputs on CA1 ripples and replays during animal's different behavioral states.
Date issued
2017-09
URI
http://hdl.handle.net/1721.1/118752
Department
Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Picower Institute for Learning and Memory
Journal
Neuron
Publisher
Elsevier BV
Citation
Yamamoto, Jun, and Susumu Tonegawa. “Direct Medial Entorhinal Cortex Input to Hippocampal CA1 Is Crucial for Extended Quiet Awake Replay.” Neuron 96, no. 1 (September 2017): 217–227.e4.
Version: Author's final manuscript
ISSN
08966273

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.