MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Valley Stoner instability of the composite Fermi sea

Author(s)
Zhu, Zheng; Sheng, D. N.; Fu, Liang; Sodemann, Inti
Thumbnail
DownloadPhysRevB.98.155104.pdf (676.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study two-component electrons in the lowest Landau level at total filling factor ν[subscript T] = 1/2 with anisotropic mass tensors and principal axes rotated by π/2 as realized in aluminum arsenide (AlAs) quantum wells. Combining exact diagonalization and the density matrix renormalization group we demonstrate that the system undergoes a quantum phase transition from a gapless state in which both flavors are equally populated to another gapless state in which all the electrons spontaneously polarize into a single flavor beyond a critical mass anisotropy of m[subscript x]/m[subscript y]∼7. We propose that this phase transition is a form of itinerant Stoner transition between a two-component and a single-component composite Fermi sea states and describe a set of trial wave functions which successfully capture the quantum numbers and shell filling effects in finite size systems as well as providing a physical picture for the energetics of these states. Our estimates indicate that the composite Fermi sea of AlAs is the analog of an itinerant Stoner magnet with a finite spontaneous valley polarization. We pinpoint experimental evidence indicating the presence of Stoner magnetism in the Jain states surrounding ν = 1/2.
Date issued
2018-10
URI
http://hdl.handle.net/1721.1/118774
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Zhu, Zheng et al. "Valley Stoner instability of the composite Fermi sea." Physical Review B 98, 15 (October 2018): 155104 © 2018 American Physical Society
Version: Final published version
ISSN
2469-9950
2469-9969

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.