MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design Method for Buckling Amplified Piezoelectric Actuator Using Flexure Joint and its Application to an Energy Efficient Brake System

Author(s)
Tsukahara, Shinichiro; Torres, James; Neal, Devin M; Asada, Haruhiko
Thumbnail
Download95_1.pdf (1.387Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
This paper shows a practical design method for a displacement amplification mechanism for a piezoelectric actuator which employs a buckling-like phenomenon. This mechanical singularity realizes a substantial displacement magnification, at least 50 times, within a simple structure. An SMA preload mechanism essentially provides potential for full range push-pull actuation to the piezoelectric actuator. This integrated actuator performs a high energy transfer ratio and is suitable for brake mechanisms due to their requirement of high force, specific displacement and energy efficiency. A practical design method is shown and is evaluated by comparing the analytical model with finite element analysis and experimental hardware performance. The actuator properties obtained by these methods fit well each other with errors less than 13%. The experimental actuators are applied to a brake for a commercial motor and its properties are evaluated. The brake can produce more than 2.5Nm in the displacement range of 0.5mm. These experimental results suggest that this novel piezoelectric actuator has potential for use in a wide range of applications. Topics: Bending (Stress), Design methodology, Buckling, Piezoelectric actuators, Brakes
Date issued
2012-10
URI
http://hdl.handle.net/1721.1/118801
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Volume 2: Legged Locomotion; Mechatronic Systems; Mechatronics; Mechatronics for Aquatic Environments; MEMS Control; Model Predictive Control; Modeling and Model-Based Control of Advanced IC Engines;
Publisher
ASME International
Citation
Tsukahara, Shinichiro, et al. “Design Method for Buckling Amplified Piezoelectric Actuator Using Flexure Joint and Its Application to an Energy Efficient Brake System.” Volume 2: Legged Locomotion; Mechatronic Systems; Mechatronics; Mechatronics for Aquatic Environments; MEMS Control; Model Predictive Control; Modeling and Model-Based Control of Advanced IC Engines, 17-19 October, 2012, Fort Lauderdale, Florida, ASME, 2012, p. 95. © 2012 by ASME.
Version: Final published version
ISBN
978-0-7918-4530-1

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.