Show simple item record

dc.contributor.authorRomano, Giuseppe
dc.contributor.authorKolpak, Alexie M.
dc.date.accessioned2018-11-02T17:34:42Z
dc.date.available2018-11-02T17:34:42Z
dc.date.issued2017-02
dc.date.submitted2016-10
dc.identifier.issn0003-6951
dc.identifier.issn1077-3118
dc.identifier.urihttp://hdl.handle.net/1721.1/118842
dc.description.abstractWhile thermal anisotropy is a desirable materials property for many applications, including transverse thermoelectrics and thermal management in electronic devices, it remains elusive in practical natural compounds. In this work, we show how nanoporous materials with anisotropic pore lattices can be used as a platform for inducing strong heat transport directionality in isotropic materials. Using density functional theory and the phonon Boltzmann transport equation, we calculate the phonon-size effects and thermal conductivity of nanoporous silicon with different anisotropic pore lattices. Our calculations predict a strong directionality in the thermal conductivity, dictated by the difference in the pore-pore distances, i.e., the phonon bottleneck, along the two Cartesian axes. Using Fourier's law, we also compute the diffusive heat transport for the same geometries obtaining significantly smaller anisotropy, revealing the crucial role of phonon-size effects in tuning thermal transport directionality. Besides enhancing our understanding of nanoscale heat transport, our results demonstrate the promise of nanoporous materials for modulating anisotropy in thermal conductivity.en_US
dc.publisherAIP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4976540en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleThermal anisotropy enhanced by phonon size effects in nanoporous materialsen_US
dc.typeArticleen_US
dc.identifier.citationRomano, Giuseppe and Alexie M. Kolpak. “Thermal Anisotropy Enhanced by Phonon Size Effects in Nanoporous Materials.” Applied Physics Letters 110, 9 (February 2017): 093104 © 2017 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorRomano, Giuseppe
dc.contributor.mitauthorKolpak, Alexie M.
dc.relation.journalApplied Physics Lettersen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-10-17T13:45:37Z
dspace.orderedauthorsRomano, Giuseppe; Kolpak, Alexie M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0026-8237
dc.identifier.orcidhttps://orcid.org/0000-0002-4347-0139
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record