MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intercalation Kinetics in Multiphase-Layered Materials

Author(s)
Smith, Raymond Barrett; Khoo, Edwin Sze Lun; Bazant, Martin Z
Thumbnail
Download1701.08858.pdf (2.106Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Many intercalation compounds possess layered structures or interpenetrating lattices that enable phase separation into three or more stable phases, or "stages," driven by competing intralayer and interlayer forces. While these structures are often well characterized in equilibrium, their effects on intercalation kinetics and transport far from equilibrium are typically neglected or approximated by empirical solid solution models. Here, we formulate a general phase-field model with thermodynamically consistent reaction kinetics and cooperative transport to capture the dynamics of intercalation in layered materials. As an important case for Li-ion batteries, we model single particles of lithium intercalated graphite as having a periodic two-layer structure with three stable phases, corresponding to zero, one, or two layers full of lithium. The electrochemical intercalation reaction is described by a generalized Butler-Volmer equation with thermodynamic factors to account for the flexible structure of the graphene planes. The model naturally captures the "voltage staircase" discharge curves as a result of staging dynamics with internal "checkerboard" domains, which cannot be described by solid-solution models based on Fickian diffusion. On the other hand, the two-layer model is computationally expensive and excludes low-density stable phases with longer-range periodicity, so we also present a reduced model for graphite, which captures the high-density stages while fitting the low-density voltage profile as an effective solid solution. The two models illustrate the general trade-off between the explicit modeling of periodic layers or lattices and the needs for computational efficiency and accurate fitting of experimental data.
Date issued
2017-06
URI
http://hdl.handle.net/1721.1/118875
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Physical Chemistry C
Publisher
American Chemical Society (ACS)
Citation
Smith, Raymond B. et al. “Intercalation Kinetics in Multiphase-Layered Materials.” The Journal of Physical Chemistry C 121, 23 (June 2017): 12505–12523 © 2017 American Chemical Society
Version: Original manuscript
ISSN
1932-7447
1932-7455

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.