Show simple item record

dc.contributor.authorHoman, Kimberly A.
dc.contributor.authorEspinosa Hoyos, Daniela
dc.contributor.authorJagielska, Anna
dc.contributor.authorDu, Huifeng
dc.contributor.authorBusbee, Travis Alexander
dc.contributor.authorAnderson, Daniel Griffith
dc.contributor.authorFang, Xuanlai
dc.contributor.authorLewis, Jennifer A.
dc.contributor.authorVan Vliet, Krystyn J
dc.date.accessioned2018-11-05T16:41:07Z
dc.date.available2018-11-05T16:41:07Z
dc.date.issued2018-01
dc.date.submitted2017-09
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/118879
dc.description.abstractMyelination is critical for transduction of neuronal signals, neuron survival and normal function of the nervous system. Myelin disorders account for many debilitating neurological diseases such as multiple sclerosis and leukodystrophies. The lack of experimental models and tools to observe and manipulate this process in vitro has constrained progress in understanding and promoting myelination, and ultimately developing effective remyelination therapies. To address this problem, we developed synthetic mimics of neuronal axons, representing key geometric, mechanical, and surface chemistry components of biological axons. These artificial axons exhibit low mechanical stiffness approaching that of a human axon, over unsupported spans that facilitate engagement and wrapping by glial cells, to enable study of myelination in environments reflecting mechanical cues that neurons present in vivo. Our 3D printing approach provides the capacity to vary independently the complex features of the artificial axons that can reflect specific states of development, disease, or injury. Here, we demonstrate that oligodendrocytes' production and wrapping of myelin depend on artificial axon stiffness, diameter, and ligand coating. This biofidelic platform provides direct visualization and quantification of myelin formation and myelinating cells' response to both physical cues and pharmacological agents.en_US
dc.description.sponsorshipNational Multiple Sclerosis Society (U.S.) (RG4855A1/1)en_US
dc.description.sponsorshipSingapore-MIT Alliance. BioSystems and Micromechanics (BioSyM) Inter-Disciplinary Research Groupen_US
dc.description.sponsorshipSaks-Kavanaugh Foundationen_US
dc.description.sponsorshipRoche Postdoctoral Fellowship Programen_US
dc.description.sponsorshipGETTYLABen_US
dc.publisherSpringer Natureen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/S41598-017-18744-6en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleEngineered 3D-printed artificial axonsen_US
dc.typeArticleen_US
dc.identifier.citationEspinosa-Hoyos, Daniela, Anna Jagielska, Kimberly A. Homan, Huifeng Du, Travis Busbee, Daniel G. Anderson, Nicholas X. Fang, Jennifer A. Lewis, and Krystyn J. Van Vliet. “Engineered 3D-Printed Artificial Axons.” Scientific Reports 8, no. 1 (January 11, 2018).en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorEspinosa Hoyos, Daniela
dc.contributor.mitauthorJagielska, Anna
dc.contributor.mitauthorDu, Huifeng
dc.contributor.mitauthorBusbee, Travis Alexander
dc.contributor.mitauthorAnderson, Daniel Griffith
dc.contributor.mitauthorFang, Xuanlai
dc.contributor.mitauthorLewis, Jennifer A.
dc.contributor.mitauthorVan Vliet, Krystyn J
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-10-11T16:24:26Z
dspace.orderedauthorsEspinosa-Hoyos, Daniela; Jagielska, Anna; Homan, Kimberly A.; Du, Huifeng; Busbee, Travis; Anderson, Daniel G.; Fang, Nicholas X.; Lewis, Jennifer A.; Van Vliet, Krystyn J.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8741-9178
dc.identifier.orcidhttps://orcid.org/0000-0001-6281-4120
dc.identifier.orcidhttps://orcid.org/0000-0001-5629-4798
dc.identifier.orcidhttps://orcid.org/0000-0001-5713-629X
dc.identifier.orcidhttps://orcid.org/0000-0001-5735-0560
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record