Show simple item record

dc.contributor.authorRebentrost, Patrick
dc.contributor.authorBromley, Thomas R.
dc.contributor.authorWeedbrook, Christian
dc.contributor.authorLloyd, Seth
dc.date.accessioned2018-11-05T18:31:11Z
dc.date.available2018-11-05T18:31:11Z
dc.date.issued2018-10
dc.date.submitted2018-06
dc.identifier.issn2469-9926
dc.identifier.issn2469-9934
dc.identifier.urihttp://hdl.handle.net/1721.1/118886
dc.description.abstractQuantum computing allows for the potential of significant advancements in both the speed and the capacity of widely used machine learning techniques. Here we employ quantum algorithms for the Hopfield network, which can be used for pattern recognition, reconstruction, and optimization as a realization of a content-addressable memory system. We show that an exponentially large network can be stored in a polynomial number of quantum bits by encoding the network into the amplitudes of quantum states. By introducing a classical technique for operating the Hopfield network, we can leverage quantum algorithms to obtain a quantum computational complexity that is logarithmic in the dimension of the data. We also present an application of our method as a genetic sequence recognizer.en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevA.98.042308en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleQuantum Hopfield neural networken_US
dc.typeArticleen_US
dc.identifier.citationRebentrost, Patrick, Thomas R. Bromley, Christian Weedbrook and Seth Lloyd. "Quantum Hopfield neural network." Phys. Rev. A 98, 042308 (2018)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorWeedbrook, Christian
dc.contributor.mitauthorLloyd, Seth
dc.relation.journalPhysical review Aen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-10-12T19:46:23Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsRebentrost, Patrick; Bromley, Thomas; Weedbrook, Christian; Lloyd, Sethen_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record