MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Photothermocapillary Oscillators

Author(s)
Hauser, Adam W.; Sundaram, Subramanian; Hayward, Ryan C.
Thumbnail
DownloadPhysRevLett.121.158001.pdf (1.031Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present a new class of tunable light-driven oscillators based on mm-scale objects adsorbed at fluid interfaces. A fixed light source induces photothermal surface tension gradients (Marangoni stresses) that drive nanocomposite hydrogel discs away from a stable apex position atop a drop of water. The capillary forces on the disc increase with surface curvature; thus, they act to restore the disc to its original position. As the disc reenters the light source it again experiences Marangoni propulsion, leading to sustained oscillation for appropriate conditions. Propulsive forces can be modulated with incident light intensity, while the restoring force can be tuned via surface curvature—i.e., drop volume—providing highly tunable oscillatory behaviors. To our knowledge, this is the first example where Marangoni and capillary forces combine to incite sustained motion. As such, a model was developed that describes this behavior and provides key insights into the underlying control parameters. We expect that this simple approach will enable the study of more complex and coupled oscillatory systems.
Date issued
2018-10
URI
http://hdl.handle.net/1721.1/118887
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Hauser, Adam W., Subramanian Sundaram and Ryan C. Hayward. "Photothermocapillary Oscillators." Phys. Rev. Lett. 121, 158001 (2018)
Version: Final published version
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.