Show simple item record

dc.contributor.authorChen, Desai
dc.contributor.authorSkouras, Melina
dc.contributor.authorZhu, Bo
dc.contributor.authorMatusik, Wojciech
dc.date.accessioned2018-11-05T19:07:19Z
dc.date.available2018-11-05T19:07:19Z
dc.date.issued2018-01
dc.date.submitted2017-08
dc.identifier.issn2375-2548
dc.identifier.urihttp://hdl.handle.net/1721.1/118889
dc.description.abstractModern fabrication techniques, such as additive manufacturing, can be used to create materials with complex custom internal structures. These engineered materials exhibit a much broader range of bulk properties than their base materials and are typically referred to as metamaterials or microstructures. Although metamaterials with extraordinary properties have many applications, designing them is very difficult and is generally done by hand. We propose a computational approach to discover families of microstructures with extremal macroscale properties automatically. Using efficient simulation and sampling techniques, we compute the space of mechanical properties covered by physically realizable microstructures. Our system then clusters microstructures with common topologies into families. Parame-terized templates are eventually extracted from families to generate new microstructure designs. We demonstrate these capabilities on the computational design of mechanical metamaterials and present five auxetic microstructure families with extremal elastic material properties. Our study opens the way for the completely automated discovery of extremal microstructures across multiple domains of physics, including applications reliant on thermal, electrical, and magnetic properties.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Simplifying Complexity in Scientific Discovery (N66001-15-C-4030)en_US
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1126/SCIADV.AAO7005en_US
dc.rightsCreative Commons Attribution-NonCommercial 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceScience Advancesen_US
dc.titleComputational discovery of extremal microstructure familiesen_US
dc.typeArticleen_US
dc.identifier.citationChen, Desai, Mélina Skouras, Bo Zhu, and Wojciech Matusik. “Computational Discovery of Extremal Microstructure Families.” Science Advances 4, no. 1 (January 2018): eaao7005.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorChen, Desai
dc.contributor.mitauthorSkouras, Melina
dc.contributor.mitauthorZhu, Bo
dc.contributor.mitauthorMatusik, Wojciech
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-10-10T16:09:16Z
dspace.orderedauthorsChen, Desai; Skouras, Mélina; Zhu, Bo; Matusik, Wojciechen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2336-6235
dc.identifier.orcidhttps://orcid.org/0000-0001-5036-6615
dc.identifier.orcidhttps://orcid.org/0000-0003-0212-5643
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record