Show simple item record

dc.contributor.authorWieghold, Sarah
dc.contributor.authorMorishige, Ashley Elizabeth
dc.contributor.authorMeyer, Luke
dc.contributor.authorBuonassisi, Anthony
dc.contributor.authorSachs, Emanuel Michael
dc.date.accessioned2018-11-05T20:08:00Z
dc.date.available2018-11-05T20:08:00Z
dc.date.issued2017-09
dc.identifier.issn1876-6102
dc.identifier.urihttp://hdl.handle.net/1721.1/118895
dc.description.abstractThe high capital expenditure (capex) necessary to manufacture crystalline silicon PV modules negatively affects the levelized cost of electricity (¢/kWh) and critically impacts the rate at which the PV industry can scale up. Wafer, cell, and module fabrication with thin free-standing silicon wafers is one key to reduce capex. Thin wafers reduce capex associated with silicon refining and wafer fabrication, which together sum to 58% of the total capex of silicon module manufacturing. In addition, thin wafers directly and significantly reduce variable costs. However, introducing 50 μm thin free-standing wafers into today's manufacturing lines result in cracking, creating a yield-based disincentive. Due to the brittle nature of silicon, wafer breakage is the major concern due to the high stress that is induced during processes in manufacturing lines. In this paper, we describe an improved method for edge micro-crack detection that can help enable low-capex, thin free-standing Si wafers. We present a method of detecting and measuring cracks along wafer edges by using a dark-field IR scattering imaging technique which enables detection of edge cracks at the micron scale. Keywords: Capex; polysilicon; thin free-standing wafer; edge crack detection; IR scattering; dark-field imagingen_US
dc.description.sponsorshipUnited States. Department of Energy (Grant DE-EE0007535)en_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.EGYPRO.2017.09.252en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleCrack detection in crystalline silicon solar cells using dark-field imagingen_US
dc.typeArticleen_US
dc.identifier.citationWieghold, Sarah et al. “Crack Detection in Crystalline Silicon Solar Cells Using Dark-Field Imaging.” Energy Procedia 124 (September 2017): 526–531 © The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorWieghold, Sarah
dc.contributor.mitauthorMorishige, Ashley Elizabeth
dc.contributor.mitauthorMeyer, Luke
dc.contributor.mitauthorBuonassisi, Anthony
dc.contributor.mitauthorSachs, Emanuel Michael
dc.relation.journalEnergy Procediaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-11-02T18:41:40Z
dspace.orderedauthorsWieghold, Sarah; Morishige, Ashley E.; Meyer, Luke; Buonassisi, Tonio; Sachs, Emanuel M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9352-8741
dc.identifier.orcidhttps://orcid.org/0000-0001-8345-4937
dc.identifier.orcidhttps://orcid.org/0000-0001-6959-4810
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record