MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction and Observation of Electron Instabilities and Phase Space Holes Concentrated in the Lunar Plasma Wake

Author(s)
Malaspina, David M.; Hutchinson, Ian Horner
Thumbnail
DownloadHutch AGU 2017GL076880.pdf (1.353Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Recent theory and numerical simulation predicts that the wake of the solar wind flow past the Moon should be the site of electrostatic instabilities that give rise to electron holes. These play an important role in the eventual merging of the wake with the background solar wind. Analysis of measurements from the ARTEMIS satellites, orbiting the Moon at distances from 1.2 to 11 R[subscript M], detects holes highly concentrated in the wake, in agreement with prediction. The theory also predicts that the hole flux density observed should be hollow, peaking away from the wake axis. Observation statistics qualitatively confirm this hollowness, lending extra supporting evidence for the identification of their generation mechanism. Keywords: lunar wake; solar wind; electron hole; electrostatic instability; ARTEMIS
Date issued
2018-05
URI
http://hdl.handle.net/1721.1/118896
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
Geophysical Research Letters
Publisher
American Geophysical Union (AGU)
Citation
Hutchinson, Ian H. and David M. Malaspina. “Prediction and Observation of Electron Instabilities and Phase Space Holes Concentrated in the Lunar Plasma Wake.” Geophysical Research Letters 45, 9 (May 2018): 3838–3845 © 2018 American Geophysical Union
Version: Final published version
ISSN
0094-8276

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.