Show simple item record

dc.contributor.authorMarkevich, V. P.
dc.contributor.authorCastellanos, S.
dc.contributor.authorLai, B.
dc.contributor.authorPeaker, A. R.
dc.contributor.authorBuonassisi, T.
dc.contributor.authorPowell, Douglas Michael
dc.contributor.authorHofstetter, Jasmin
dc.contributor.authorJensen, Mallory Ann
dc.contributor.authorMorishige, Ashley Elizabeth
dc.date.accessioned2018-11-05T20:40:23Z
dc.date.available2018-11-05T20:40:23Z
dc.date.issued2016-02
dc.date.submitted2015-11
dc.identifier.issn0021-8979
dc.identifier.issn1089-7550
dc.identifier.urihttp://hdl.handle.net/1721.1/118899
dc.description.abstractThe bulk minority-carrier lifetime in p-And n-type kerfless epitaxial (epi) crystalline silicon wafers is shown to increase >500× during phosphorus gettering. We employ kinetic defect simulations and microstructural characterization techniques to elucidate the root cause of this exceptional gettering response. Simulations and deep-level transient spectroscopy (DLTS) indicate that a high concentration of point defects (likely Pt) is "locked in" during fast (60 °C/min) cooling during epi wafer growth. The fine dispersion of moderately fast-diffusing recombination-active point defects limits as-grown lifetime but can also be removed during gettering, confirmed by DLTS measurements. Synchrotron-based X-ray fluorescence microscopy indicates metal agglomerates at structural defects, yet the structural defect density is sufficiently low to enable high lifetimes. Consequently, after phosphorus diffusion gettering, epi silicon exhibits a higher lifetime than materials with similar bulk impurity contents but higher densities of structural defects, including multicrystalline ingot and ribbon silicon materials. Device simulations suggest a solar-cell efficiency potential of this material >23%.en_US
dc.description.sponsorshipUnited States. Department of Energy (Contract DE-EE0005314)en_US
dc.description.sponsorshipUnited States. Department of Energy (Contract EEC-1041895)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Contract EEC-1041895)en_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4940947en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceOther repositoryen_US
dc.titleExceptional gettering response of epitaxially grown kerfless siliconen_US
dc.typeArticleen_US
dc.identifier.citationPowell, D. M. et al. “Exceptional Gettering Response of Epitaxially Grown Kerfless Silicon.” Journal of Applied Physics 119, 6 (February 2016): 065101 © 2016 AIP Publishing LLCen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorPowell, Douglas Michael
dc.contributor.mitauthorHofstetter, Jasmin
dc.contributor.mitauthorJensen, Mallory Ann
dc.contributor.mitauthorMorishige, Ashley Elizabeth
dc.relation.journalJournal of Applied Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-11-01T14:00:45Z
dspace.orderedauthorsPowell, D. M.; Markevich, V. P.; Hofstetter, J.; Jensen, M. A.; Morishige, A. E.; Castellanos, S.; Lai, B.; Peaker, A. R.; Buonassisi, T.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5353-0780
dc.identifier.orcidhttps://orcid.org/0000-0001-9352-8741
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record