Show simple item record

dc.contributor.authorColetti, Gianluca
dc.contributor.authorLai, Barry
dc.contributor.authorJensen, Mallory Ann
dc.contributor.authorHofstetter, Jasmin
dc.contributor.authorMorishige, Ashley Elizabeth
dc.contributor.authorFenning, David P
dc.contributor.authorBuonassisi, Anthony
dc.date.accessioned2018-11-06T17:27:03Z
dc.date.available2018-11-06T17:27:03Z
dc.date.issued2015-05
dc.date.submitted2015-04
dc.identifier.issn0003-6951
dc.identifier.issn1077-3118
dc.identifier.urihttp://hdl.handle.net/1721.1/118922
dc.description.abstractChromium (Cr) can degrade silicon wafer-based solar cell efficiencies at concentrations as low as 10¹⁰cm⁻³. In this contribution, we employ synchrotron-based X-ray fluorescence microscopy to study chromium distributions in multicrystalline silicon in as-grown material and after phosphorous diffusion. We complement quantified precipitate size and spatial distribution with interstitial Cr concentration and minority carrier lifetime measurements to provide insight into chromium gettering kinetics and offer suggestions for minimizing the device impacts of chromium. We observe that Cr-rich precipitates in as-grown material are generally smaller than iron-rich precipitates and that Cr[subscript i] point defects account for only one-half of the total Cr in the as-grown material. This observation is consistent with previous hypotheses that Cr transport and CrSi₂ growth are more strongly diffusion-limited during ingot cooling. We apply two phosphorous diffusion gettering profiles that both increase minority carrier lifetime by two orders of magnitude and reduce [Cr[subscript i]] by three orders of magnitude to 10¹⁰cm⁻³. Some Cr-rich precipitates persist after both processes, and locally high [Cr[subscript i]] after the high-temperature process indicates that further optimization of the chromium gettering profile is possible.en_US
dc.description.sponsorshipUnited States. Department of Energy (Contract DE-EE0005314)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Contract EEC-1041895)en_US
dc.description.sponsorshipUnited States. Department of Energy (Contract EEC-1041895)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1122374)en_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4921619en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleSynchrotron-based analysis of chromium distributions in multicrystalline silicon for solar cellsen_US
dc.typeArticleen_US
dc.identifier.citationJensen, Mallory Ann et al. “Synchrotron-Based Analysis of Chromium Distributions in Multicrystalline Silicon for Solar Cells.” Applied Physics Letters 106, 20 (May 2015): 202104 © 2015 AIP Publishing LLCen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorJensen, Mallory Ann
dc.contributor.mitauthorHofstetter, Jasmin
dc.contributor.mitauthorMorishige, Ashley Elizabeth
dc.contributor.mitauthorFenning, David P
dc.contributor.mitauthorBuonassisi, Anthony
dc.relation.journalApplied Physics Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-10-31T15:53:52Z
dspace.orderedauthorsJensen, Mallory Ann; Hofstetter, Jasmin; Morishige, Ashley E.; Coletti, Gianluca; Lai, Barry; Fenning, David P.; Buonassisi, Tonioen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5353-0780
dc.identifier.orcidhttps://orcid.org/0000-0001-9352-8741
dc.identifier.orcidhttps://orcid.org/0000-0002-4609-9312
dc.identifier.orcidhttps://orcid.org/0000-0001-8345-4937
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record