dc.contributor.author | Sinha, Ayan T | |
dc.contributor.author | Lee, Justin | |
dc.contributor.author | Li, Shuai | |
dc.contributor.author | Barbastathis, George | |
dc.date.accessioned | 2018-11-07T15:05:28Z | |
dc.date.available | 2018-11-07T15:05:28Z | |
dc.date.issued | 2017-09 | |
dc.date.submitted | 2017-08 | |
dc.identifier.issn | 2334-2536 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/118935 | |
dc.description.abstract | Deep learning has been proven to yield reliably generalizable solutions to numerous classification and decision tasks. Here, we demonstrate for the first time to our knowledge that deep neural networks (DNNs) can be trained to solve end-to-end inverse problems in computational imaging. We experimentally built and tested a lensless imaging system where a DNN was trained to recover phase objects given their propagated intensity diffraction patterns. | en_US |
dc.description.sponsorship | United States. Department of Energy (Grant DE-FG02-97ER25308) | en_US |
dc.publisher | Optical Society of America | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1364/OPTICA.4.001117 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Lensless computational imaging through deep learning | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Sinha, Ayan et al. “Lensless Computational Imaging through Deep Learning.” Optica 4, 9 (September 2017): 1117 © 2017 Optical Society of America | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Institute for Medical Engineering & Science | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
dc.contributor.mitauthor | Sinha, Ayan T | |
dc.contributor.mitauthor | Lee, Justin | |
dc.contributor.mitauthor | Li, Shuai | |
dc.contributor.mitauthor | Barbastathis, George | |
dc.relation.journal | Optica | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2018-10-29T19:25:51Z | |
dspace.orderedauthors | Sinha, Ayan; Lee, Justin; Li, Shuai; Barbastathis, George | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-7836-0431 | |
dc.identifier.orcid | https://orcid.org/0000-0002-4140-1404 | |
mit.license | OPEN_ACCESS_POLICY | en_US |