MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cohesin Loss Eliminates All Loop Domains

Author(s)
Rao, Suhas S.P.; Huang, Su-Chen; Glenn St Hilaire, Brian; Engreitz, Jesse M.; Perez, Elizabeth M.; Kieffer-Kwon, Kyong-Rim; Sanborn, Adrian L.; Johnstone, Sarah E.; Bascom, Gavin D.; Bochkov, Ivan D.; Huang, Xingfan; Shamim, Muhammad S.; Shin, Jaeweon; Turner, Douglass; Ye, Ziyi; Omer, Arina D.; Robinson, James T.; Schlick, Tamar; Bernstein, Bradley E.; Casellas, Rafael; Aiden, Erez Lieberman; Lander, Eric Steven; ... Show more Show less
Thumbnail
Downloadnihms909480.pdf (3.711Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The human genome folds to create thousands of intervals, called “contact domains,” that exhibit enhanced contact frequency within themselves. “Loop domains” form because of tethering between two loci—almost always bound by CTCF and cohesin—lying on the same chromosome. “Compartment domains” form when genomic intervals with similar histone marks co-segregate. Here, we explore the effects of degrading cohesin. All loop domains are eliminated, but neither compartment domains nor histone marks are affected. Loss of loop domains does not lead to widespread ectopic gene activation but does affect a significant minority of active genes. In particular, cohesin loss causes superenhancers to co-localize, forming hundreds of links within and across chromosomes and affecting the regulation of nearby genes. We then restore cohesin and monitor the re-formation of each loop. Although re-formation rates vary greatly, many megabase-sized loops recovered in under an hour, consistent with a model where loop extrusion is rapid. Mapping the nucleome in 4D during cohesin loss and recovery reveals that cohesin degradation eliminates loop domains but has only modest transcriptional consequences. Keywords: cohesion; genome architecture; loop extrusion; chromatin loops; superenhancers; gene regulation; nuclear compartments; Hi-C; 4D Nucleome; CTCF
Date issued
2017-10
URI
http://hdl.handle.net/1721.1/118942
Department
Massachusetts Institute of Technology. Department of Biology
Journal
Cell
Publisher
Elsevier
Citation
Rao, Suhas S.P. et al. “Cohesin Loss Eliminates All Loop Domains.” Cell 171, 2 (October 2017): 305–320 © 2017 Elsevier Inc
Version: Author's final manuscript
ISSN
0092-8674
1097-4172

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.