Show simple item record

dc.contributor.authorGul, Sheraz
dc.contributor.authorPastor, Ernest
dc.contributor.authorYano, Junko
dc.contributor.authorYachandra, Vittal K.
dc.contributor.authorMiner, Elise Marie
dc.contributor.authorRicke, Nathan Darrell
dc.contributor.authorVan Voorhis, Troy
dc.contributor.authorDinca, Mircea
dc.date.accessioned2018-11-08T15:49:33Z
dc.date.available2018-11-08T15:49:33Z
dc.date.issued2017-09
dc.date.submitted2017-08
dc.identifier.issn2155-5435
dc.identifier.issn2155-5435
dc.identifier.urihttp://hdl.handle.net/1721.1/118958
dc.description.abstractEstablishing catalytic structure–function relationships introduces the ability to optimize the catalyst structure for enhanced activity, selectivity, and durability against reaction conditions and prolonged catalysis. Here we present experimental and computational data elucidating the mechanism for the O[subscript 2] reduction reaction with a conductive nickel-based metal–organic framework (MOF). Elucidation of the O[subscript 2] reduction electrokinetics, understanding the role of the extended MOF structure in providing catalytic activity, observation of how the redox activity and pK[susbscript a] of the organic ligand influences catalysis, and identification of the catalyst active site yield a detailed O[subscript 2] reduction mechanism where the ligand, rather than the metal, plays a central role. More generally, familiarization with how the structural and electronic properties of the MOF influence reactivity may provide deeper insight into the mechanisms by which less structurally defined nonplatinum group metal electrocatalysts reduce O[subscript 2]. Keywords: 2D materials; electrocatalysis; metal−organic framework; O[subscript 2] reduction; porous catalystsen_US
dc.language.isoen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acscatal.7b02647en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Dinca via Erja Kajosaloen_US
dc.titleMechanistic Evidence for Ligand-Centered Electrocatalytic Oxygen Reduction with the Conductive MOF Nien_US
dc.typeArticleen_US
dc.identifier.citationMiner, Elise M., et al. “Mechanistic Evidence for Ligand-Centered Electrocatalytic Oxygen Reduction with the Conductive MOF Ni[subscript 3] (Hexaiminotriphenylene)[subscript 2].” ACS Catalysis, vol. 7, no. 11, Nov. 2017, pp. 7726–31.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.approverDinca, Mirceaen_US
dc.contributor.mitauthorMiner, Elise Marie
dc.contributor.mitauthorRicke, Nathan Darrell
dc.contributor.mitauthorVan Voorhis, Troy
dc.contributor.mitauthorDinca, Mircea
dc.relation.journalACS Catalysisen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMiner, Elise M.; Gul, Sheraz; Ricke, Nathan D.; Pastor, Ernest; Yano, Junko; Yachandra, Vittal K.; Van Voorhis, Troy; Dincă, Mirceaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3350-2499
dc.identifier.orcidhttps://orcid.org/0000-0002-5338-8876
dc.identifier.orcidhttps://orcid.org/0000-0001-7111-0176
dc.identifier.orcidhttps://orcid.org/0000-0002-1262-1264
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record