MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search for Supersymmetry in Events with One Lepton and Multiple Jets Exploiting the Angular Correlation Between the Lepton and the Missing Transverse Momentum in Proton–proton Collisions at √s = 13 TeV

Author(s)
CMS Collaboration; Abercrombie, Daniel Robert; Allen, Brandon Leigh; Azzolini, Virginia; Barbieri, Richard Alexander; Baty, Austin Alan; Bi, Ran; Brandt, Stephanie Akemi; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez-Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan George; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Amy Elizabeth; Luckey Jr, P David; Maier, Benedikt; Marini, Andrea Carlo; McGinn, Christopher Francis; Mironov, Camelia Maria; Narayanan, Siddharth Madhavan; Niu, Xinmei; Paus, Christoph M. E.; Roland, Christof E; Roland, Gunther M; Salfeld-Nebgen, Jakob Maxillian Henry; Stephans, George S. F.; Tatar, Kaya; Velicanu, Dragos Alexandru; Wang, Jing; Wang, Ta-Wei; Wyslouch, Boleslaw; ... Show more Show less
Thumbnail
Download1-s2.0-S037026931830217X-main.pdf (1.542Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Results are presented from a search for supersymmetry in events with a single electron or muon and hadronic jets. The data correspond to a sample of proton–proton collisions at s=13TeV with an integrated luminosity of 35.9fb⁻¹, recorded in 2016 by the CMS experiment. A number of exclusive search regions are defined according to the number of jets, the number of b -tagged jets, the scalar sum of the transverse momenta of the jets, and the scalar sum of the missing transverse momentum and the transverse momentum of the lepton. Standard model background events are reduced significantly by requiring a large azimuthal angle between the direction of the lepton and of the reconstructed W boson, computed under the hypothesis that all of the missing transverse momentum in the event arises from a neutrino produced in the leptonic decay of the W boson. The numbers of observed events are consistent with the expectations from standard model processes, and the results are used to set lower limits on supersymmetric particle masses in the context of two simplified models of gluino pair production. In the first model, where each gluino decays to a top quark–antiquark pair and a neutralino, gluino masses up to 1.8 TeV are excluded at the 95% CL. The second model considers a three-body decay to a light quark–antiquark pair and a chargino, which subsequently decays to a W boson and a neutralino. In this model, gluinos are excluded up to 1.9 TeV. Keywords: CMS; Physics; Supersymmetry
Date issued
2018-03
URI
http://hdl.handle.net/1721.1/118963
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Laboratory for Nuclear Science
Journal
Physics Letters B
Publisher
Elsevier
Citation
Sirunyan, A.M. et al. “Search for Supersymmetry in Events with One Lepton and Multiple Jets Exploiting the Angular Correlation Between the Lepton and the Missing Transverse Momentum in Proton–proton Collisions at √s = 13 TeV.” Physics Letters B 780 (May 2018): 384–409 © 2018 The Authors
Version: Final published version
ISSN
0370-2693

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.