Reduced Linear Noise Approximation for Biochemical Reaction Networks with Time-Scale Separation: The Stochastic tQSSA⁺
Author(s)
Herath, Narmada K; Del Vecchio, Domitilla
Download1.5012752.pdf (1.835Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA⁺". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.
Date issued
2018-03Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
The Journal of Chemical Physics
Publisher
American Institute of Physics (AIP)
Citation
Herath, Narmada and Domitilla Del Vecchio. “Reduced Linear Noise Approximation for Biochemical Reaction Networks with Time-Scale Separation: The Stochastic tQSSA⁺.” The Journal of Chemical Physics 148, 9 (March 2018): 094108 © 2018 Author(s)
Version: Final published version
ISSN
0021-9606
1089-7690