An operational definition of quark and gluon jets
Author(s)
Komiske, Patrick T.; Metodiev, Eric Mario; Thaler, Jesse
Download13130_2018_Article_9366.pdf (3.068Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
While “quark” and “gluon” jets are often treated as separate, well-defined objects in both theoretical and experimental contexts, no precise, practical, and hadron-level definition of jet flavor presently exists. To remedy this issue, we develop and advocate for a data-driven, operational definition of quark and gluon jets that is readily applicable at colliders. Rather than specifying a per-jet flavor label, we aggregately define quark and gluon jets at the distribution level in terms of measured hadronic cross sections. Intuitively, quark and gluon jets emerge as the two maximally separable categories within two jet samples in data. Benefiting from recent work on data-driven classifiers and topic modeling for jets, we show that the practical tools needed to implement our definition already exist for experimental applications. As an informative example, we demonstrate the power of our operational definition using Z+jet and dijet samples, illustrating that pure quark and gluon distributions and fractions can be successfully extracted in a fully well-defined manner. Keyword: Jets
Date issued
2018-11Department
Massachusetts Institute of Technology. Center for Theoretical PhysicsJournal
Journal of High Energy Physics
Publisher
Springer Nature
Citation
Komiske, Patrick T. et al. "An operational definition of quark and gluon jets." Journal of High Energy Physics 2018 (November 2018): 59 © 2018 The Author(s)
Version: Final published version
ISSN
1029-8479