Show simple item record

dc.contributor.authorGiraldo, Juan P.
dc.contributor.authorKoman, Volodymyr
dc.contributor.authorLew, Tedrick T. S.
dc.contributor.authorWong, Min Hao
dc.contributor.authorKwak, Seonyeong
dc.contributor.authorStrano, Michael S.
dc.date.accessioned2018-11-15T16:55:31Z
dc.date.available2018-11-15T16:55:31Z
dc.date.issued2017-11
dc.date.submitted2017-08
dc.identifier.issn1473-0197
dc.identifier.issn1473-0189
dc.identifier.urihttp://hdl.handle.net/1721.1/119124
dc.description.abstractStomatal function can be used effectively to monitor plant hydraulics, photosensitivity, and gas exchange. Current approaches to measure single stomatal aperture, such as mold casting or fluorometric techniques, do not allow real time or persistent monitoring of the stomatal function over timescales relevant for long term plant physiological processes, including vegetative growth and abiotic stress. Herein, we utilize a nanoparticle-based conducting ink that preserves stomatal function to print a highly stable, electrical conductometric sensor actuated by the stomata pore itself, repeatedly and reversibly for over 1 week. This stomatal electro-mechanical pore size sensor (SEMPSS) allows for real-time tracking of the latency of single stomatal opening and closing times in planta, which we show vary from 7.0 ± 0.5 to 25.0 ± 0.5 min for the former and from 53.0 ± 0.5 to 45.0 ± 0.5 min for the latter in Spathiphyllum wallisii. These values are shown to correlate with the soil water potential and the onset of the wilting response, in quantitative agreement with a dynamic mathematical model of stomatal function. A single stoma of Spathiphyllum wallisii is shown to distinguish between incident light intensities (up to 12 mW cm−2) with temporal latency slow as 7.0 ± 0.5 min. Over a seven day period, the latency in opening and closing times are stable throughout the plant diurnal cycle and increase gradually with the onset of drought. The monitoring of stomatal function over long term timescales at single stoma level will improve our understanding of plant physiological responses to environmental factors.en_US
dc.language.isoen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/C7LC00930Een_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Stranoen_US
dc.titlePersistent drought monitoring using a microfluidic-printed electro-mechanical sensor of stomataen_US
dc.typeArticleen_US
dc.identifier.citationKoman, Volodymyr B. et al. “Persistent Drought Monitoring Using a Microfluidic-Printed Electro-Mechanical Sensor of Stomata in Planta.” Lab on a Chip 17, 23 (2017): 4015–4024 © 2017 Royal Society of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.approverVolodymyr Komanen_US
dc.contributor.mitauthorKoman, Volodymyr
dc.contributor.mitauthorLew, Tedrick T. S.
dc.contributor.mitauthorWong, Min Hao
dc.contributor.mitauthorKwak, Seonyeong
dc.contributor.mitauthorStrano, Michael S.
dc.relation.journalLab on a Chipen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKoman, Volodymyr B.; Lew, Tedrick T. S.; Wong, Min Hao; Kwak, Seon-Yeong; Giraldo, Juan P.; Strano, Michael S.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6988-9096
dc.identifier.orcidhttps://orcid.org/0000-0002-6960-1985
dc.identifier.orcidhttps://orcid.org/0000-0003-2944-808X
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record