MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enforcing safety of cyberphysical systems using flatness and abstraction

Author(s)
Colombo, Alessandro; Del Vecchio, Domitilla
Thumbnail
DownloadColombo.pdf (264.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The diffusion of cyberphysical systems acting in human-populated environments brings to the fore the problem of implementing provably safe control laws, to avoid potentially dangerous collisions between moving parts of the system, and with nearby obstacles, without compromising the system's functionality. The limiting factor in most implementations is the model's complexity, and a common workaround includes the reduction of the physical model, based on differential equations, to a finite symbolic model. Following this strategy, we are investigating ways to exploit the specific structure of many mechanical systems (the differentially flat systems) to achieve this simplification. Our objective is to construct a supervisor enforcing a given set of safety rules, while imposing as little constraints as possible on the system's functionality. In this paper, we outline our approach, and present an example -- a collision avoidance algorithm for a fleet of vehicles converging to an intersection. Our approach improves on previous results by providing a deterministic symbolic model for a class of system, regardless of their stability properties, and by addressing explicitly the problem of safety enforcing.
Date issued
2011-06
URI
http://hdl.handle.net/1721.1/119163
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
ACM SIGBED Review
Publisher
Association for Computing Machinery (ACM)
Citation
Colombo, Alessandro, and Domitilla Del Vecchio. “Enforcing Safety of Cyberphysical Systems Using Flatness and Abstraction.” ACM SIGBED Review 8, no. 2 (June 1, 2011): 11–14, New York, NY, USA, Association for Computing Machinery (ACM), 2011.
Version: Author's final manuscript
ISSN
1551-3688

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.