MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Realizing ‘integral control’ in living cells: how to overcome leaky integration due to dilution?

Author(s)
Qian, Yili; Del Vecchio, Domitilla
Thumbnail
DownloadJRSIIntegral.pdf (589.6Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
A major problem in the design of synthetic genetic circuits is robustness to perturbations and uncertainty. Because of this, there have been significant efforts in recent years in finding approaches to implement integral control in genetic circuits. Integral controllers have the unique ability to make the output of a process adapt perfectly to disturbances. However, implementing an integral controller is challenging in living cells. This is because a key aspect of any integral controller is a ‘memory’ element that stores the accumulation (integral) of the error between the output and its desired set-point. The ability to realize such a memory element in living cells is fundamentally challenged by the fact that all biomolecules dilute as cells grow, resulting in a ‘leaky’ memory that gradually fades away. As a consequence, the adaptation property is lost. Here, we propose a general principle for designing integral controllers such that the performance is practically unaffected by dilution. In particular, we mathematically prove that if the reactions implementing the integral controller are all much faster than dilution, then the adaptation error due to integration leakiness becomes negligible. We exemplify this design principle with two synthetic genetic circuits aimed at reaching adaptation of gene expression to fluctuations in cellular resources. Our results provide concrete guidance on the biomolecular processes that are most appropriate for implementing integral controllers in living cells.
Date issued
2018-02
URI
http://hdl.handle.net/1721.1/119170
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Synthetic Biology Center
Journal
Journal of The Royal Society Interface
Publisher
Royal Society Publishing
Citation
Qian, Yili, and Domitilla Del Vecchio. “Realizing ‘integral Control’ in Living Cells: How to Overcome Leaky Integration Due to Dilution?” Journal of The Royal Society Interface 15, no. 139 (February 2018): 20170902.
Version: Author's final manuscript
ISSN
1742-5689
1742-5662

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.