Show simple item record

dc.contributor.authorBurgess, Nicholas K.
dc.contributor.authorJayasinghe, Savithru
dc.contributor.authorDarmofal, David L
dc.contributor.authorGalbraith, Marshall C.
dc.contributor.authorAllmaras, Steven R.
dc.date.accessioned2018-11-19T15:41:10Z
dc.date.available2018-11-19T15:41:10Z
dc.date.issued2017-12
dc.date.submitted2016-05
dc.identifier.issn1420-0597
dc.identifier.issn1573-1499
dc.identifier.urihttp://hdl.handle.net/1721.1/119183
dc.description.abstractThis paper analyzes the adjoint equations and boundary conditions for porous media flow models, specifically the Buckley-Leverett equation, and the compressible two-phase flow equations in mass conservation form. An adjoint analysis of a general scalar hyperbolic conservation law whose primal solutions include a shock jump is initially presented, and the results are later specialized to the Buckley-Leverett equation. The non-convexity of the Buckley-Leverett flux function results in adjoint characteristics that are parallel to the shock front upstream of the shock and emerge from the shock front downstream of the shock. Thus, in contrast to the behavior of Burgers’ equation where the adjoint is continuous at a shock, the Buckley-Leverett adjoint, in general, contains a discontinuous jump across the shock. Discrete adjoint solutions from space-time discontinuous Galerkin finite element approximations of the Buckley-Leverett equation are shown to be consistent with the derived closed-form analytical solutions. Furthermore, a general result relating the adjoint equations for different (though equivalent) primal equations is used to relate the two-phase flow adjoints to the Buckley-Leverett adjoint. Adjoint solutions from space-time discontinuous Galerkin finite element approximations of the two-phase flow equations are observed to obey this relationship. Keywords: Adjoint solutions; Buckley-Leverett; Two-phase flow; Conservation law; Continuous analysis; Shockwavesen_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10596-017-9708-2en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceDavid Darmofalen_US
dc.titleAdjoint analysis of Buckley-Leverett and two-phase flow equationsen_US
dc.typeArticleen_US
dc.identifier.citationJayasinghe, Savithru et al. “Adjoint Analysis of Buckley-Leverett and Two-Phase Flow Equations.” Computational Geosciences 22, 2 (January 2018): 527–542 © 2018 Springer International Publishing AG, part of Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.approverDarmofal, David L.en_US
dc.contributor.mitauthorJayasinghe, Savithru
dc.contributor.mitauthorDarmofal, David L
dc.contributor.mitauthorGalbraith, Marshall C.
dc.contributor.mitauthorAllmaras, Steven R.
dc.relation.journalComputational Geosciencesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsJayasinghe, Savithru; Darmofal, David L.; Galbraith, Marshall C.; Burgess, Nicholas K.; Allmaras, Steven R.en_US
dspace.embargo.termsNen_US
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record