Show simple item record

dc.contributor.authorAugusto, André
dc.contributor.authorBowden, Stuart G.
dc.contributor.authorLooney, Erin Elizabeth
dc.contributor.authordel Canizo Nadal, Carlos
dc.contributor.authorBuonassisi, Anthony
dc.date.accessioned2018-11-19T16:03:10Z
dc.date.available2018-11-19T16:03:10Z
dc.date.issued2017-09
dc.identifier.issn18766102
dc.identifier.urihttp://hdl.handle.net/1721.1/119186
dc.description.abstractThinner silicon wafers are a pathway to lower cost without compromising the efficiency of solar cells. In this work, we study the recombination mechanism for thin and thick silicon heterojunction solar cells, and we discuss the potential of using more defective material to manufacture high performance thin solar cells. Modelling the performance of silicon heterojunction solar cells indicates that at open-circuit voltage the recombination is dominated by Auger and surface, representing nearly 90% of the total recombination. At maximum power point, the surface is responsible for 50 to 80% of the overall recombination, and its contribution increases inversely with the wafer thickness. The expe rimental results show that for lower quality CZ material with 1 ms bulk lifetime, 60 μm-thick cells perform better than 170 μm-thick cells. The potential efficiency gain is 1% absolute. The gains in voltage of using thinner wafers are significantly higher for the lower quality CZ material, 25 mV, than for standard CZ material,10 mV.en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipUnited States. Department of Energy (CA No. EEC-1041895)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.description.sponsorshipSpain. Ministry of Economy and Competitiveness (project ENE2014-56069-C4-2-R)en_US
dc.description.sponsorshipUnited States. Department of Defense (DODRIF13-OEPP01-P-0020)en_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.EGYPRO.2017.09.346en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleThin silicon solar cells: Pathway to cost-effective and defect-tolerant cell designen_US
dc.typeArticleen_US
dc.identifier.citationAugusto, André, Erin Looney, Carlos del Cañizo, Stuart G. Bowden, and Tonio Buonassisi. “Thin Silicon Solar Cells: Pathway to Cost-Effective and Defect-Tolerant Cell Design.” Energy Procedia 124 (September 2017): 706–711.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorLooney, Erin Elizabeth
dc.contributor.mitauthordel Canizo Nadal, Carlos
dc.contributor.mitauthorBuonassisi, Anthony
dc.relation.journalEnergy Procediaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-11-05T18:32:45Z
dspace.orderedauthorsAugusto, André; Looney, Erin; del Cañizo, Carlos; Bowden, Stuart G.; Buonassisi, Tonioen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6895-9312
dc.identifier.orcidhttps://orcid.org/0000-0001-8345-4937
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record