Show simple item record

dc.contributor.authorMoores, Sheri L.
dc.contributor.authorLaquerre, Sylvie
dc.contributor.authorEmdal, Kristina Bennet
dc.contributor.authorDittmann, Antje
dc.contributor.authorReddy, Raven J.
dc.contributor.authorLescarbeau, Rebecca S.
dc.contributor.authorWhite, Forest M.
dc.date.accessioned2018-11-19T17:01:25Z
dc.date.available2018-11-19T17:01:25Z
dc.date.issued2017-08
dc.identifier.issn1535-7163
dc.identifier.issn1538-8514
dc.identifier.urihttp://hdl.handle.net/1721.1/119191
dc.description.abstractApproximately 10% of non–small cell lung cancer (NSCLC) patients in the United States and 40% of NSCLC patients in Asia have activating epidermal growth factor receptor (EGFR) mutations and are eligible to receive targeted anti-EGFR therapy. Despite an extension of life expectancy associated with this treatment, resistance to EGFR tyrosine kinase inhibitors and anti-EGFR antibodies is almost inevitable. To identify additional signaling routes that can be cotargeted to overcome resistance, we quantified tumor-specific molecular changes that govern resistant cancer cell growth and survival. Mass spectrometry–based quantitative proteomics was used to profile in vivo signaling changes in 41 therapy-resistant tumors from four xenograft NSCLC models. We identified unique and tumor-specific tyrosine phosphorylation rewiring in tumors resistant to treatment with the irreversible third-generation EGFR-inhibitor, osimertinib, or the novel dual-targeting EGFR/Met antibody, JNJ-61186372. Tumor-specific increases in tyrosine-phosphorylated peptides from EGFR family members, Shc1 and Gab1 or Src family kinase (SFK) substrates were observed, underscoring a differential ability of tumors to uniquely escape EGFR inhibition. Although most resistant tumors within each treatment group displayed a marked inhibition of EGFR as well as SFK signaling, the combination of EGFR inhibition (osimertinib) and SFK inhibition (saracatinib or dasatinib) led to further decrease in cell growth in vitro. This result suggests that residual SFK signaling mediates therapeutic resistance and that elimination of this signal through combination therapy may delay onset of resistance. Overall, analysis of individual resistant tumors captured unique in vivo signaling rewiring that would have been masked by analysis of in vitro cell population averages.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant R01CA096504)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant U54CA210180)en_US
dc.description.sponsorshipNovo Nordisk STAR Fellowshipen_US
dc.description.sponsorshipational Institutes of Health (U.S.) (training grant T32GM008334)en_US
dc.description.sponsorshipKoch Institute. Quinquennial Cancer Research Fellowshipen_US
dc.publisherAmerican Association for Cancer Research (AACR)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1158/1535-7163.MCT-17-0413en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleCharacterization of in vivo resistance to osimertinib and JNJ-61186372, an EGFR/Met bi-specific antibody, reveals unique and consensus mechanisms of resistanceen_US
dc.typeArticleen_US
dc.identifier.citationEmdal, Kristina B., Antje Dittmann, Raven J. Reddy, Rebecca S. Lescarbeau, Sheri L. Moores, Sylvie Laquerre, and Forest M. White. “Characterization of In Vivo Resistance to Osimertinib and JNJ-61186372, an EGFR/Met Bispecific Antibody, Reveals Unique and Consensus Mechanisms of Resistance.” Molecular Cancer Therapeutics 16, no. 11 (August 22, 2017): 2572–2585.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorEmdal, Kristina Bennet
dc.contributor.mitauthorDittmann, Antje
dc.contributor.mitauthorReddy, Raven J.
dc.contributor.mitauthorLescarbeau, Rebecca S.
dc.contributor.mitauthorWhite, Forest M
dc.relation.journalMolecular Cancer Therapeuticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-11-06T14:43:50Z
dspace.orderedauthorsEmdal, Kristina B.; Dittmann, Antje; Reddy, Raven J.; Lescarbeau, Rebecca S.; Moores, Sheri L.; Laquerre, Sylvie; White, Forest M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6483-9110
dc.identifier.orcidhttps://orcid.org/0000-0002-2570-5192
dc.identifier.orcidhttps://orcid.org/0000-0002-3856-7454
dc.identifier.orcidhttps://orcid.org/0000-0003-2409-4315
dc.identifier.orcidhttps://orcid.org/0000-0002-1545-1651
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record