| dc.contributor.author | Liu, Zhiguang | |
| dc.contributor.author | Li, Jiafang | |
| dc.contributor.author | Lu, Ling | |
| dc.contributor.author | Li, Zhi-Yuan | |
| dc.contributor.author | Du, Huifeng | |
| dc.contributor.author | Fang, Xuanlai | |
| dc.date.accessioned | 2018-11-19T23:31:51Z | |
| dc.date.available | 2018-11-19T23:31:51Z | |
| dc.date.issued | 2018-07 | |
| dc.identifier.issn | 2375-2548 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/119214 | |
| dc.description.abstract | Kirigami enables versatile shape transformation from two-dimensional (2D) precursors to 3D architectures with simplified fabrication complexity and unconventional structural geometries. We demonstrate a one-step and on-site nano-kirigami method that avoids the prescribed multistep procedures in traditional mesoscopic kirigami or origami techniques. The nano-kirigami is readily implemented by in situ cutting and buckling a suspended gold film with programmed ion beam irradiation. By using the topography-guided stress equilibrium, rich 3D shape transformation such as buckling, rotation, and twisting of nanostructures is precisely achieved, which can be predicted by our mechanical modeling. Benefiting from the nanoscale 3D twisting features, giant optical chirality is achieved in an intuitively designed 3D pinwheel-like structure, in strong contrast to the achiral 2D precursor without nano-kirigami. The demonstrated nano-kirigami, as well as the exotic 3D nanostructures, could be adopted in broad nanofabrication platforms and could open up new possibilities for the exploration of functional micro-/nanophotonic and mechanical devices. | en_US |
| dc.description.sponsorship | United States. Air Force. Office of Scientific Research. Multidisciplinary University Research Initiative (award FA9550-12-1-0488, “Quantum Metaphotonics and Quantum Metamaterials”) | en_US |
| dc.description.sponsorship | King Abdullah University of Science and Technology (KAUST-MIT agreement no. 2950, “Metamaterials by deep subwavelength non-Hermitian engineering”) | en_US |
| dc.publisher | American Association for the Advancement of Science (AAAS) | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1126/sciadv.aat4436 | en_US |
| dc.rights | Creative Commons Attribution-NonCommercial 4.0 International | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | en_US |
| dc.source | Science | en_US |
| dc.title | Nano-kirigami with giant optical chirality | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Liu, Zhiguang, Huifeng Du, Jiafang Li, Ling Lu, Zhi-Yuan Li, and Nicholas X. Fang. “Nano-Kirigami with Giant Optical Chirality.” Science Advances 4, no. 7 (July 2018): eaat4436. © 2018 The Authors | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
| dc.contributor.mitauthor | Du, Huifeng | |
| dc.contributor.mitauthor | Fang, Xuanlai | |
| dc.relation.journal | Science Advances | en_US |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2018-11-15T19:24:57Z | |
| dspace.orderedauthors | Liu, Zhiguang; Du, Huifeng; Li, Jiafang; Lu, Ling; Li, Zhi-Yuan; Fang, Nicholas X. | en_US |
| dspace.embargo.terms | N | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0001-6281-4120 | |
| dc.identifier.orcid | https://orcid.org/0000-0001-5713-629X | |
| mit.license | PUBLISHER_CC | en_US |