MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Compact Operational Amplifier with Load-Insensitive Stability Compensation for High-Precision Transducer Interface

Author(s)
Yu, Zhanghao; Yang, Xi; Chung, SungWon
Thumbnail
Downloadsensors-18-00393-v2.pdf (4.100Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
High-resolution electronic interface circuits for transducers with nonlinear capacitive impedance need an operational amplifier, which is stable for a wide range of load capacitance. Such operational amplifier in a conventional design requires a large area for compensation capacitors, increasing costs and limiting applications. In order to address this problem, we present a gain-boosted two-stage operational amplifier, whose frequency response compensation capacitor size is insensitive to the load capacitance and also orders of magnitude smaller compared to the conventional Miller-compensation capacitor that often dominates chip area. By exploiting pole-zero cancellation between a gain-boosting stage and the main amplifier stage, the compensation capacitor of the proposed operational amplifier becomes less dependent of load capacitance, so that it can also operate with a wide range of load capacitance. A prototype operational amplifier designed in 0.13-μ m complementary metal–oxide–semiconductor (CMOS) with a 400-fF compensation capacitor occupies 900-μ m² chip area and achieves 0.022–2.78-MHz unity gain bandwidth and over 65°phase margin with a load capacitance of 0.1–15 nF. The prototype amplifier consumes 7.6 μW from a single 1.0-V supply. For a given compensation capacitor size and a chip area, the prototype design demonstrates the best reported performance trade-off on unity gain bandwidth, maximum stable load capacitance, and power consumption. Keywords: analog integrated circuits; operational amplifiers; transducer interface circuit; Internet of Things (IoT) device
Date issued
2018-01
URI
http://hdl.handle.net/1721.1/119362
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Sensors
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Citation
Yu, Zhanghao et al. "A Compact Operational Amplifier with Load-Insensitive Stability Compensation for High-Precision Transducer Interface." Sensors 18, 2 (January 2018): 393 © 2018 The Authors
Version: Final published version
ISSN
1424-8220

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.