Show simple item record

dc.contributor.authorAnnavarapu, Rama Kishore
dc.contributor.authorSojoudi, Hossein
dc.contributor.authorKim, Sanha
dc.contributor.authorZhao, Hangbo
dc.contributor.authorMariappan, Dhanushkodi Durai
dc.contributor.authorHart, Anastasios John
dc.contributor.authorMcKinley, Gareth H
dc.contributor.authorGleason, Karen K
dc.date.accessioned2018-12-03T14:57:22Z
dc.date.available2018-12-03T14:57:22Z
dc.date.issued2017-11
dc.date.submitted2017-09
dc.identifier.issn1944-8244
dc.identifier.issn1944-8252
dc.identifier.urihttp://hdl.handle.net/1721.1/119380
dc.description.abstractScalable manufacturing of structured materials with engineered nanoporosity is critical for applications in energy storage devices (i.e., batteries and supercapacitors) and in the wettability control of surfaces (i.e., superhydrophobic and superomniphobic surfaces). Patterns formed in arrays of vertically aligned carbon nanotubes (VA-CNTs) have been extensively studied for these applications. However, the as-deposited features are often undesirably altered upon liquid infiltration and evaporation because of capillarity-driven aggregation of low density CNT forests. Here, it is shown that an ultrathin, conformal, and low-surface-energy layer of poly perfluorodecyl acrylate, poly(1H,1H,2H,2H-perfluorodecyl acrylate) (pPFDA), makes the VA-CNTs robust against surface-tension-driven aggregation and densification. This single vapor-deposition step allows the fidelity of the as-deposited VA-CNT patterns to be retained during wet processing, such as inking, and subsequent drying. It is demonstrated how to establish omniphobicity or liquid infiltration by controlling the surface morphology. Retaining a crust of entangled CNTs and pPFDA aggregates on top of the patterned VA-CNTs produces micropillars with re-entrant features that prevent the infiltration of low-surface-tension liquids and thus gives rise to stable omniphobicity. Plasma treatments before and after polymer deposition remove the crust of entangled CNTs and pPFDA aggregates and attach hydroxyl groups to the CNT tips, enabling liquid infiltration yet preventing densification of the highly porous CNTs. The latter observation demonstrates the protective character of the pPFDA coating with the potential application of these surfaces for direct contact printing of microelectronic features.en_US
dc.description.sponsorshipUnited States. Air Force. Office of Scientific Research (FA9550-11-1-0089)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.description.sponsorshipUniversity of Toledoen_US
dc.description.sponsorshipMIT-Chevron university partnership programen_US
dc.description.sponsorshipMassachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract DAAD-19-02D-002)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (award CMMI- 463181)en_US
dc.description.sponsorshipUnited States. Air Force. Office of Scientific Researchen_US
dc.description.sponsorshipSkolkovo Foundationen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/ACSAMI.7B13713en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceOther repositoryen_US
dc.titleStable Wettability Control of Nanoporous Microstructures by iCVD Coating of Carbon Nanotubesen_US
dc.typeArticleen_US
dc.identifier.citationSojoudi, Hossein, Sanha Kim, Hangbo Zhao, Rama Kishore Annavarapu, Dhanushkodi Mariappan, A. John Hart, Gareth H. McKinley, and Karen K. Gleason. “Stable Wettability Control of Nanoporous Microstructures by iCVD Coating of Carbon Nanotubes.” ACS Applied Materials & Interfaces 9, no. 49 (December 4, 2017): 43287–43299. doi:10.1021/acsami.7b13713.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Urban Studies and Planningen_US
dc.contributor.mitauthorSojoudi, Hossein
dc.contributor.mitauthorKim, Sanha
dc.contributor.mitauthorZhao, Hangbo
dc.contributor.mitauthorMariappan, Dhanushkodi Durai
dc.contributor.mitauthorHart, Anastasios John
dc.contributor.mitauthorMcKinley, Gareth H
dc.contributor.mitauthorGleason, Karen K
dc.relation.journalACS Applied Materials & Interfacesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-11-29T18:36:13Z
dspace.orderedauthorsSojoudi, Hossein; Kim, Sanha; Zhao, Hangbo; Annavarapu, Rama Kishore; Mariappan, Dhanushkodi; Hart, A. John; McKinley, Gareth H.; Gleason, Karen K.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1365-9640
dc.identifier.orcidhttps://orcid.org/0000-0002-3548-6173
dc.identifier.orcidhttps://orcid.org/0000-0001-5229-4192
dc.identifier.orcidhttps://orcid.org/0000-0002-4376-2238
dc.identifier.orcidhttps://orcid.org/0000-0002-7372-3512
dc.identifier.orcidhttps://orcid.org/0000-0001-8323-2779
dc.identifier.orcidhttps://orcid.org/0000-0001-6127-1056
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record